Title:
|
Closure spaces and characterizations of filters in terms of their Stone images (English) |
Author:
|
Mynard, Anh Tran |
Author:
|
Mynard, Frédéric |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
57 |
Issue:
|
3 |
Year:
|
2007 |
Pages:
|
1025-1034 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Fréchet, strongly Fréchet, productively Fréchet, weakly bisequential and bisequential filters (i.e., neighborhood filters in spaces of the same name) are characterized in a unified manner in terms of their images in the Stone space of ultrafilters. These characterizations involve closure structures on the set of ultrafilters. The case of productively Fréchet filters answers a question of S. Dolecki and turns out to be the only one involving a non topological closure structure. (English) |
Keyword:
|
filters |
Keyword:
|
ultrafilters |
Keyword:
|
Frechet |
Keyword:
|
closure spaces |
MSC:
|
54A05 |
MSC:
|
54A20 |
MSC:
|
54D55 |
idZBL:
|
Zbl 1174.54001 |
idMR:
|
MR2356937 |
. |
Date available:
|
2009-09-24T11:51:21Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128223 |
. |
Reference:
|
[1] A. V. Arhangel’skii: Bisequential spaces, tightness of products, and metrizability conditions in topological groups.Trans. Moscow Math. Soc. 55 (1994), 207–219. MR 1468459 |
Reference:
|
[2] A. Bella and V. I. Malykhin: Single non-isolated point space.Rend. Istit. Mat. Univ. Trieste 28 (1996), 101–113. MR 1463912 |
Reference:
|
[3] S. Dolecki: Convergence-theoretic methods in quotient quest.Topology Appl. 73 (1996), 1–21. MR 1413721, 10.1016/0166-8641(96)00067-3 |
Reference:
|
[4] S. Dolecki: Private communication (2003).. |
Reference:
|
[5] Marcel Erné: The ABC of order and topology.Category Theory at Work (H. Herrlich and H.-E. Porst, eds.), Heldermann, 1991, pp. 57–83. MR 1147919 |
Reference:
|
[6] I. Labuda, F. Jordan and F. Mynard: Finite products of filters that are compact relative to a class of filters.Applied General Topology (to appear). MR 2398508 |
Reference:
|
[7] F. Jordan and F. Mynard: Espaces productivement de Fréchet.C. R. Acad. Sci. Paris, Ser I 335 (2002), 259–262. MR 1933669, 10.1016/S1631-073X(02)02473-1 |
Reference:
|
[8] F. Jordan and F. Mynard: Productively Fréchet spaces.Czech. Math. J. 54 (2004), 981–990. MR 2100010, 10.1007/s10587-004-6446-0 |
Reference:
|
[9] F. Jordan and F. Mynard: Compatible relations on filters and stability of local topological properties under supremum and product.Topopogy Appl. 153 (2006), 2386–2412. MR 2243719, 10.1016/j.topol.2005.08.008 |
Reference:
|
[10] Chuan Liu: On weakly bisequential spaces.Comment. Math. Univ. Carolinae 41 (2000), 611–617. MR 1795090 |
Reference:
|
[11] V. I. Malyhin: On countable spaces having no bicompactification of countable tightness.Dokl. Akad. Nauk SSSR 206 (1972), 1407–1411. Zbl 0263.54015, MR 0320981 |
Reference:
|
[12] E. Michael: A quintuple quotient quest.Gen. Topology Appl. 2 (1972), 91–138. Zbl 0238.54009, MR 0309045, 10.1016/0016-660X(72)90040-2 |
Reference:
|
[13] R. C. Olson: Biquotient maps, countably bisequential spaces and related topics.Topology Appl. 4 (1974), 1–28. MR 0365463, 10.1016/0016-660X(74)90002-6 |
. |