Previous |  Up |  Next

Article

Title: Closure spaces and characterizations of filters in terms of their Stone images (English)
Author: Mynard, Anh Tran
Author: Mynard, Frédéric
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 3
Year: 2007
Pages: 1025-1034
Summary lang: English
.
Category: math
.
Summary: Fréchet, strongly Fréchet, productively Fréchet, weakly bisequential and bisequential filters (i.e., neighborhood filters in spaces of the same name) are characterized in a unified manner in terms of their images in the Stone space of ultrafilters. These characterizations involve closure structures on the set of ultrafilters. The case of productively Fréchet filters answers a question of S. Dolecki and turns out to be the only one involving a non topological closure structure. (English)
Keyword: filters
Keyword: ultrafilters
Keyword: Frechet
Keyword: closure spaces
MSC: 54A05
MSC: 54A20
MSC: 54D55
idZBL: Zbl 1174.54001
idMR: MR2356937
.
Date available: 2009-09-24T11:51:21Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128223
.
Reference: [1] A. V. Arhangel’skii: Bisequential spaces, tightness of products, and metrizability conditions in topological groups.Trans. Moscow Math. Soc. 55 (1994), 207–219. MR 1468459
Reference: [2] A. Bella and V. I. Malykhin: Single non-isolated point space.Rend. Istit. Mat. Univ. Trieste 28 (1996), 101–113. MR 1463912
Reference: [3] S. Dolecki: Convergence-theoretic methods in quotient quest.Topology Appl. 73 (1996), 1–21. MR 1413721, 10.1016/0166-8641(96)00067-3
Reference: [4] S. Dolecki: Private communication (2003)..
Reference: [5] Marcel Erné: The ABC of order and topology.Category Theory at Work (H. Herrlich and H.-E. Porst, eds.), Heldermann, 1991, pp. 57–83. MR 1147919
Reference: [6] I. Labuda, F. Jordan and F. Mynard: Finite products of filters that are compact relative to a class of filters.Applied General Topology (to appear). MR 2398508
Reference: [7] F. Jordan and F. Mynard: Espaces productivement de Fréchet.C. R. Acad. Sci. Paris, Ser I 335 (2002), 259–262. MR 1933669, 10.1016/S1631-073X(02)02473-1
Reference: [8] F. Jordan and F. Mynard: Productively Fréchet spaces.Czech. Math. J. 54 (2004), 981–990. MR 2100010, 10.1007/s10587-004-6446-0
Reference: [9] F. Jordan and F. Mynard: Compatible relations on filters and stability of local topological properties under supremum and product.Topopogy Appl. 153 (2006), 2386–2412. MR 2243719, 10.1016/j.topol.2005.08.008
Reference: [10] Chuan Liu: On weakly bisequential spaces.Comment. Math. Univ. Carolinae 41 (2000), 611–617. MR 1795090
Reference: [11] V. I. Malyhin: On countable spaces having no bicompactification of countable tightness.Dokl. Akad. Nauk SSSR 206 (1972), 1407–1411. Zbl 0263.54015, MR 0320981
Reference: [12] E. Michael: A quintuple quotient quest.Gen. Topology Appl. 2 (1972), 91–138. Zbl 0238.54009, MR 0309045, 10.1016/0016-660X(72)90040-2
Reference: [13] R. C. Olson: Biquotient maps, countably bisequential spaces and related topics.Topology Appl. 4 (1974), 1–28. MR 0365463, 10.1016/0016-660X(74)90002-6
.

Files

Files Size Format View
CzechMathJ_57-2007-3_18.pdf 298.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo