Previous |  Up |  Next

Article

Title: Hypercyclicity of special operators on Hilbert function spaces (English)
Author: Yousefi, B.
Author: Haghkhah, S.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 3
Year: 2007
Pages: 1035-1041
Summary lang: English
.
Category: math
.
Summary: In this paper we give some sufficient conditions for the adjoint of a weighted composition operator on a Hilbert space of analytic functions to be hypercyclic. (English)
Keyword: multiplier
Keyword: orbit
Keyword: hypercyclic vector
Keyword: multiplication operator
Keyword: weighted composition operator
MSC: 30H05
MSC: 47A16
MSC: 47B33
MSC: 47B37
idZBL: Zbl 1174.47312
idMR: MR2356938
.
Date available: 2009-09-24T11:51:28Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128224
.
Reference: [1] J.  Bes: Three problems on hypercyclic operators.PhD. Thesis, Kent State University, 1998.
Reference: [2] J.  Bes, A. Peris: Hereditarily hypercyclic operators.J.  Funct. Anal. 167 (1999), 94–112. MR 1710637, 10.1006/jfan.1999.3437
Reference: [3] P. S. Bourdon: Orbits of hyponormal operators.Mich. Math. J. 44 (1997), 345–353. Zbl 0896.47020, MR 1460419, 10.1307/mmj/1029005709
Reference: [4] P. S. Bourdon, J. H.  Shapiro: Cyclic Phenomena for Composition Operators. Memoirs of the Am. Math. Soc.  125.Am. Math. Soc., Providence, 1997. MR 1396955
Reference: [5] P. S.  Bourdon, J.  H.  Shapiro: Hypercyclic operators that commute with the Bergman backward shift.Trans. Am. Math. Soc 352 (2000), 5293–5316. MR 1778507, 10.1090/S0002-9947-00-02648-9
Reference: [6] R. M.  Gethner, J. H. Shapiro: Universal vectors for operators on spaces of holomorphic functions.Proc. Am. Math. Soc. 100 (1987), 281–288. MR 0884467, 10.1090/S0002-9939-1987-0884467-4
Reference: [7] G.  Godefroy, J. H.  Shapiro: Operators with dense, invariant cyclic vector manifolds.J. Funct. Anal. 98 (1991), 229–269. MR 1111569, 10.1016/0022-1236(91)90078-J
Reference: [8] K.  Goswin, G.  Erdmann: Universal families and hypercyclic operators.Bull. Am. Math. Soc. 35 (1999), 345–381. MR 1685272
Reference: [9] D. A. Herrero: Limits of hypercyclic and supercyclic operators.J. Funct. Anal. 99 (1991), 179–190. Zbl 0758.47016, MR 1120920, 10.1016/0022-1236(91)90058-D
Reference: [10] C.  Kitai: Invariant closed sets for linear operators.Thesis, University of Toronto, Toronto, 1982.
Reference: [11] C. Read: The invariant subspace problem for a class of Banach spaces. 2. Hypercyclic operators.Isr. J.  Math. 63 (1988), 1–40. MR 0959046, 10.1007/BF02765019
Reference: [12] S.  Rolewicz: On orbits of elements.Stud. Math. 32 (1969), 17–22. Zbl 0174.44203, MR 0241956, 10.4064/sm-32-1-17-22
Reference: [13] H. N.  Salas: Hypercyclic weighted shifts.Trans. Am. Math. Soc. 347 (1995), 993–1004. Zbl 0822.47030, MR 1249890, 10.1090/S0002-9947-1995-1249890-6
Reference: [14] A. L.  Shields, L. J.  Wallen: The commutants of certain Hilbert space operators.Indiana Univ. Math. J. 20 (1971), 777–788. MR 0287352, 10.1512/iumj.1971.20.20062
Reference: [15] B.  Yousefi, H.  Rezaei: Hypercyclicity on the algebra of Hilbert-Schmidt operators.Result. Math. 46 (2004), 174–180. MR 2093472, 10.1007/BF03322879
Reference: [16] B.  Yousefi, H.  Rezaei: Some necessary and sufficient conditions for Hypercyclicity Criterion.Proc. Indian Acad. Sci. (Math. Sci.) 115 (2005), 209–216. MR 2142466, 10.1007/BF02829627
.

Files

Files Size Format View
CzechMathJ_57-2007-3_19.pdf 238.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo