Title:
|
Hypercyclicity of special operators on Hilbert function spaces (English) |
Author:
|
Yousefi, B. |
Author:
|
Haghkhah, S. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
57 |
Issue:
|
3 |
Year:
|
2007 |
Pages:
|
1035-1041 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we give some sufficient conditions for the adjoint of a weighted composition operator on a Hilbert space of analytic functions to be hypercyclic. (English) |
Keyword:
|
multiplier |
Keyword:
|
orbit |
Keyword:
|
hypercyclic vector |
Keyword:
|
multiplication operator |
Keyword:
|
weighted composition operator |
MSC:
|
30H05 |
MSC:
|
47A16 |
MSC:
|
47B33 |
MSC:
|
47B37 |
idZBL:
|
Zbl 1174.47312 |
idMR:
|
MR2356938 |
. |
Date available:
|
2009-09-24T11:51:28Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128224 |
. |
Reference:
|
[1] J. Bes: Three problems on hypercyclic operators.PhD. Thesis, Kent State University, 1998. |
Reference:
|
[2] J. Bes, A. Peris: Hereditarily hypercyclic operators.J. Funct. Anal. 167 (1999), 94–112. MR 1710637, 10.1006/jfan.1999.3437 |
Reference:
|
[3] P. S. Bourdon: Orbits of hyponormal operators.Mich. Math. J. 44 (1997), 345–353. Zbl 0896.47020, MR 1460419, 10.1307/mmj/1029005709 |
Reference:
|
[4] P. S. Bourdon, J. H. Shapiro: Cyclic Phenomena for Composition Operators. Memoirs of the Am. Math. Soc. 125.Am. Math. Soc., Providence, 1997. MR 1396955 |
Reference:
|
[5] P. S. Bourdon, J. H. Shapiro: Hypercyclic operators that commute with the Bergman backward shift.Trans. Am. Math. Soc 352 (2000), 5293–5316. MR 1778507, 10.1090/S0002-9947-00-02648-9 |
Reference:
|
[6] R. M. Gethner, J. H. Shapiro: Universal vectors for operators on spaces of holomorphic functions.Proc. Am. Math. Soc. 100 (1987), 281–288. MR 0884467, 10.1090/S0002-9939-1987-0884467-4 |
Reference:
|
[7] G. Godefroy, J. H. Shapiro: Operators with dense, invariant cyclic vector manifolds.J. Funct. Anal. 98 (1991), 229–269. MR 1111569, 10.1016/0022-1236(91)90078-J |
Reference:
|
[8] K. Goswin, G. Erdmann: Universal families and hypercyclic operators.Bull. Am. Math. Soc. 35 (1999), 345–381. MR 1685272 |
Reference:
|
[9] D. A. Herrero: Limits of hypercyclic and supercyclic operators.J. Funct. Anal. 99 (1991), 179–190. Zbl 0758.47016, MR 1120920, 10.1016/0022-1236(91)90058-D |
Reference:
|
[10] C. Kitai: Invariant closed sets for linear operators.Thesis, University of Toronto, Toronto, 1982. |
Reference:
|
[11] C. Read: The invariant subspace problem for a class of Banach spaces. 2. Hypercyclic operators.Isr. J. Math. 63 (1988), 1–40. MR 0959046, 10.1007/BF02765019 |
Reference:
|
[12] S. Rolewicz: On orbits of elements.Stud. Math. 32 (1969), 17–22. Zbl 0174.44203, MR 0241956, 10.4064/sm-32-1-17-22 |
Reference:
|
[13] H. N. Salas: Hypercyclic weighted shifts.Trans. Am. Math. Soc. 347 (1995), 993–1004. Zbl 0822.47030, MR 1249890, 10.1090/S0002-9947-1995-1249890-6 |
Reference:
|
[14] A. L. Shields, L. J. Wallen: The commutants of certain Hilbert space operators.Indiana Univ. Math. J. 20 (1971), 777–788. MR 0287352, 10.1512/iumj.1971.20.20062 |
Reference:
|
[15] B. Yousefi, H. Rezaei: Hypercyclicity on the algebra of Hilbert-Schmidt operators.Result. Math. 46 (2004), 174–180. MR 2093472, 10.1007/BF03322879 |
Reference:
|
[16] B. Yousefi, H. Rezaei: Some necessary and sufficient conditions for Hypercyclicity Criterion.Proc. Indian Acad. Sci. (Math. Sci.) 115 (2005), 209–216. MR 2142466, 10.1007/BF02829627 |
. |