Previous |  Up |  Next


Title: Classification of 4-dimensional homogeneous D'Atri spaces (English)
Author: Arias-Marco, Teresa
Author: Kowalski, Oldřich
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 1
Year: 2008
Pages: 203-239
Summary lang: English
Category: math
Summary: The property of being a D’Atri space (i.e., a space with volume-preserving symmetries) is equivalent to the infinite number of curvature identities called the odd Ledger conditions. In particular, a Riemannian manifold $(M,g)$ satisfying the first odd Ledger condition is said to be of type $\mathcal {A}$. The classification of all 3-dimensional D’Atri spaces is well-known. All of them are locally naturally reductive. The first attempts to classify all 4-dimensional homogeneous D’Atri spaces were done in the papers by Podesta-Spiro and Bueken-Vanhecke (which are mutually complementary). The authors started with the corresponding classification of all spaces of type $\mathcal {A}$, but this classification was incomplete. Here we present the complete classification of all homogeneous spaces of type $\mathcal {A}$ in a simple and explicit form and, as a consequence, we prove correctly that all homogeneous 4-dimensional D’Atri spaces are locally naturally reductive. (English)
Keyword: Riemannian manifold
Keyword: naturally reductive Riemannian homogeneous space
Keyword: D’Atri space
MSC: 53B21
MSC: 53C21
MSC: 53C25
MSC: 53C30
idZBL: Zbl 1174.53024
idMR: MR2402535
Date available: 2009-09-24T11:54:34Z
Last updated: 2016-04-07
Stable URL:
Reference: [1] T.  Arias-Marco: The classification of 4-dimensional homogeneous D’Atri spaces revisited.Differential Geometry and its Applications (to appear). Zbl 1121.53026, MR 2293639
Reference: [2] L.  Bérard Bergery: Les espaces homogènes riemanniens de dimension  4.Géométrie riemannienne en dimension 4, L.  Bérard Bergery, M.  Berger, C.  Houzel (eds.), CEDIC, Paris, 1981. (French) MR 0769130
Reference: [3] E.  Boeckx, L.  Vanhecke, O.  Kowalski: Riemannian Manifolds of Conullity Two.World Scientific, Singapore, 1996. MR 1462887
Reference: [4] P.  Bueken, L.  Vanhecke: Three- and four-dimensional Einstein-like manifolds and homogeneity.Geom. Dedicata 75 (1999), 123–136. MR 1686754, 10.1023/A:1005060208823
Reference: [5] J. E.  D’Atri, H. K.  Nickerson: Divergence preserving geodesic symmetries.J. Differ. Geom. 3 (1969), 467–476. MR 0262969
Reference: [6] J. E.  D’Atri, H. K.  Nickerson: Geodesic symmetries in spaces with special curvature tensors.J. Differ. Geom. 9 (1974), 251–262. MR 0394520
Reference: [7] G. R.  Jensen: Homogeneous Einstein spaces of dimension four.J. Differ. Geom. 3 (1969), 309–349. Zbl 0194.53203, MR 0261487
Reference: [8] S.  Kobayashi, K.  Nomizu: Foundations of Differential Geometry  I.Interscience, New York, 1963. MR 0152974
Reference: [9] O.  Kowalski: Spaces with volume-preserving symmetries and related classes of Riemannian manifolds.Rend. Semin. Mat. Univ. Politec. Torino, Fascicolo Speciale (1983), 131–158. Zbl 0631.53033, MR 0829002
Reference: [10] O.  Kowalski, F.  Prüfer, L.  Vanhecke: D’Atri Spaces. Topics in Geometry.Prog. Nonlinear Differ. Equ. Appl. 20 (1996), 241–284. MR 1390318
Reference: [11] J.  Milnor: Curvatures of left invariant metrics on Lie groups.Adv. Math. 21 (1976), 293–329. Zbl 0341.53030, MR 0425012, 10.1016/S0001-8708(76)80002-3
Reference: [12] H.  Pedersen, P.  Tod: The Ledger curvature conditions and D’Atri geometry.Differ. Geom. Appl. 11 (1999), 155–162. MR 1712123, 10.1016/S0926-2245(99)00026-1
Reference: [13] F.  Podestà, A.  Spiro: Four-dimensional Einstein-like manifolds and curvature homogeneity.Geom. Dedicata 54 (1995), 225–243. MR 1326728, 10.1007/BF01265339
Reference: [14] I. M.  Singer: Infinitesimally homogeneous spaces.Commun. Pure Appl. Math. 13 (1960), 685–697. Zbl 0171.42503, MR 0131248, 10.1002/cpa.3160130408
Reference: [15] Z. I.  Szabó: Spectral theory for operator families on Riemannian manifolds.Proc. Symp. Pure Maths. 54 (1993), 615–665.
Reference: [16] K. P.  Tod: Four-dimensional D’Atri-Einstein spaces are locally symmetric.Differ. Geom. Appl. 11 (1999), 55–67. Zbl 0930.53028, MR 1702467, 10.1016/S0926-2245(99)00024-8


Files Size Format View
CzechMathJ_58-2008-1_14.pdf 414.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo