Title:
|
Classification of 4-dimensional homogeneous D'Atri spaces (English) |
Author:
|
Arias-Marco, Teresa |
Author:
|
Kowalski, Oldřich |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
58 |
Issue:
|
1 |
Year:
|
2008 |
Pages:
|
203-239 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The property of being a D’Atri space (i.e., a space with volume-preserving symmetries) is equivalent to the infinite number of curvature identities called the odd Ledger conditions. In particular, a Riemannian manifold $(M,g)$ satisfying the first odd Ledger condition is said to be of type $\mathcal {A}$. The classification of all 3-dimensional D’Atri spaces is well-known. All of them are locally naturally reductive. The first attempts to classify all 4-dimensional homogeneous D’Atri spaces were done in the papers by Podesta-Spiro and Bueken-Vanhecke (which are mutually complementary). The authors started with the corresponding classification of all spaces of type $\mathcal {A}$, but this classification was incomplete. Here we present the complete classification of all homogeneous spaces of type $\mathcal {A}$ in a simple and explicit form and, as a consequence, we prove correctly that all homogeneous 4-dimensional D’Atri spaces are locally naturally reductive. (English) |
Keyword:
|
Riemannian manifold |
Keyword:
|
naturally reductive Riemannian homogeneous space |
Keyword:
|
D’Atri space |
MSC:
|
53B21 |
MSC:
|
53C21 |
MSC:
|
53C25 |
MSC:
|
53C30 |
idZBL:
|
Zbl 1174.53024 |
idMR:
|
MR2402535 |
. |
Date available:
|
2009-09-24T11:54:34Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128255 |
. |
Reference:
|
[1] T. Arias-Marco: The classification of 4-dimensional homogeneous D’Atri spaces revisited.Differential Geometry and its Applications (to appear). Zbl 1121.53026, MR 2293639 |
Reference:
|
[2] L. Bérard Bergery: Les espaces homogènes riemanniens de dimension 4.Géométrie riemannienne en dimension 4, L. Bérard Bergery, M. Berger, C. Houzel (eds.), CEDIC, Paris, 1981. (French) MR 0769130 |
Reference:
|
[3] E. Boeckx, L. Vanhecke, O. Kowalski: Riemannian Manifolds of Conullity Two.World Scientific, Singapore, 1996. MR 1462887 |
Reference:
|
[4] P. Bueken, L. Vanhecke: Three- and four-dimensional Einstein-like manifolds and homogeneity.Geom. Dedicata 75 (1999), 123–136. MR 1686754, 10.1023/A:1005060208823 |
Reference:
|
[5] J. E. D’Atri, H. K. Nickerson: Divergence preserving geodesic symmetries.J. Differ. Geom. 3 (1969), 467–476. MR 0262969 |
Reference:
|
[6] J. E. D’Atri, H. K. Nickerson: Geodesic symmetries in spaces with special curvature tensors.J. Differ. Geom. 9 (1974), 251–262. MR 0394520 |
Reference:
|
[7] G. R. Jensen: Homogeneous Einstein spaces of dimension four.J. Differ. Geom. 3 (1969), 309–349. Zbl 0194.53203, MR 0261487 |
Reference:
|
[8] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry I.Interscience, New York, 1963. MR 0152974 |
Reference:
|
[9] O. Kowalski: Spaces with volume-preserving symmetries and related classes of Riemannian manifolds.Rend. Semin. Mat. Univ. Politec. Torino, Fascicolo Speciale (1983), 131–158. Zbl 0631.53033, MR 0829002 |
Reference:
|
[10] O. Kowalski, F. Prüfer, L. Vanhecke: D’Atri Spaces. Topics in Geometry.Prog. Nonlinear Differ. Equ. Appl. 20 (1996), 241–284. MR 1390318 |
Reference:
|
[11] J. Milnor: Curvatures of left invariant metrics on Lie groups.Adv. Math. 21 (1976), 293–329. Zbl 0341.53030, MR 0425012, 10.1016/S0001-8708(76)80002-3 |
Reference:
|
[12] H. Pedersen, P. Tod: The Ledger curvature conditions and D’Atri geometry.Differ. Geom. Appl. 11 (1999), 155–162. MR 1712123, 10.1016/S0926-2245(99)00026-1 |
Reference:
|
[13] F. Podestà, A. Spiro: Four-dimensional Einstein-like manifolds and curvature homogeneity.Geom. Dedicata 54 (1995), 225–243. MR 1326728, 10.1007/BF01265339 |
Reference:
|
[14] I. M. Singer: Infinitesimally homogeneous spaces.Commun. Pure Appl. Math. 13 (1960), 685–697. Zbl 0171.42503, MR 0131248, 10.1002/cpa.3160130408 |
Reference:
|
[15] Z. I. Szabó: Spectral theory for operator families on Riemannian manifolds.Proc. Symp. Pure Maths. 54 (1993), 615–665. |
Reference:
|
[16] K. P. Tod: Four-dimensional D’Atri-Einstein spaces are locally symmetric.Differ. Geom. Appl. 11 (1999), 55–67. Zbl 0930.53028, MR 1702467, 10.1016/S0926-2245(99)00024-8 |
. |