Previous |  Up |  Next

Article

Title: On the prime graphs of the automorphism groups of sporadic simple groups (English)
Author: Khosravi, Behrooz
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 45
Issue: 2
Year: 2009
Pages: 83-94
Summary lang: English
.
Category: math
.
Summary: In this paper as the main result, we determine finite groups with the same prime graph as the automorphism group of a sporadic simple group, except $J_2$. (English)
Keyword: automorphism group of a sporadic simple group
Keyword: prime graph
MSC: 05C25
MSC: 20D05
MSC: 20D08
MSC: 20D45
MSC: 20D60
idZBL: Zbl 1204.20028
idMR: MR2591665
.
Date available: 2009-06-25T18:17:01Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/128298
.
Reference: [1] Chen, Z. M., Shi, W. J.: On simple $C_{pp}$ groups.J. Southwest China Teachers Univ. 18 (3) (1993), 249–256.
Reference: [2] Chigira, N., Iiyori, N., Yamaki, H.: Non-abelian Sylow subgroups of finite groups of even order.Invent. Math. 139 (2000), 525–539. Zbl 0961.20017, MR 1738059, 10.1007/s002229900040
Reference: [3] Conway, J., Curtis, R., Norton, S., Parker, R., Wilson, R.: Atlas of finite groups.Clarendon Press, Oxford, 1985. Zbl 0568.20001
Reference: [4] Crescenzo, P.: A diophantine equation which arises in the theory of finite groups.Adv. Math. 17 (1975), 25–29. Zbl 0305.10016, MR 0371812, 10.1016/0001-8708(75)90083-3
Reference: [5] Gorenstein, D.: Finite groups.Harper and Row, New York, 1968. Zbl 0185.05701, MR 0231903
Reference: [6] Gruenberg, K. W., Roggenkamp, K. W.: Decomposition of the augmentation ideal and of the relation modules of a finite group.Proc. London Math. Soc. (3) 31 (2) (1975), 149–166. Zbl 0313.20004, MR 0374247
Reference: [7] Hagie, M.: The prime graph of a sporadic simple group.Comm. Algebra 31 (9) (2003), 4405–4424. Zbl 1031.20009, MR 1995543, 10.1081/AGB-120022800
Reference: [8] Iranmanesh, A., Alavi, S. H., Khosravi, B.: A characterization of $PSL(3,q)$ where $q$ is an odd prime power.J. Pure Appl. Algebra 170 (2-3) (2002), 243–254. Zbl 1001.20005, MR 1904845, 10.1016/S0022-4049(01)00113-X
Reference: [9] Janson, C., Lux, K., Parker, R. A., Wilson, R. A.: An atlas of Brauer characters.Clarendon Press, Oxford, 1995. MR 1367961
Reference: [10] Khosravi, A., Khosravi, B.: A new characterization of almost sporadic groups.J. Algebra Appl. 1 (3) (2002), 267–279. Zbl 1033.20013, MR 1932151, 10.1142/S021949880200015X
Reference: [11] Khosravi, B.: $n$-recognition by prime graph ofthe simple group $PSL(2,q)$.J Algebra Appl. 7 (6) (2008), 735–748. MR 2483329, 10.1142/S0219498808003090
Reference: [12] Mazurov, V. D.: Characterization of finite groups by sets of orders of their elements.Algebra and Logic 36 (1) (1997), 23–32. MR 1454690, 10.1007/BF02671951
Reference: [13] Mazurov, V. D.: Recognition of finite groups by a set of orders of their elements.Algebra and Logic 37 (6) (1998), 371–379. Zbl 0917.20021, MR 1680412, 10.1007/BF02671691
Reference: [14] Praeger, C. E., Shi, W. J.: A characterization of some alternating and symmetric grops.22 (5) (1994), 1507–1530. MR 1264726
Reference: [15] Shi, W., Bi, J.: A characteristic property for each finite projective special linear group.Lecture Notes in Math. 1456 (1990), 171–180. Zbl 0718.20009, MR 1092230, 10.1007/BFb0100738
Reference: [16] Zsigmondy, K.: Zur Theorie der Potenzreste.Monatsh. Math. Phys. 3 (1892), 265–284. MR 1546236
.

Files

Files Size Format View
ArchMathRetro_045-2009-2_2.pdf 504.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo