Previous |  Up |  Next

Article

Title: The Perron product integral in Lie groups (English)
Author: Morales, Pedro
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 43
Issue: 2
Year: 1993
Pages: 349-366
.
Category: math
.
MSC: 22E30
MSC: 26A39
MSC: 28B10
idZBL: Zbl 0811.28008
idMR: MR1211757
DOI: 10.21136/CMJ.1993.128392
.
Date available: 2009-09-24T09:30:56Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128392
.
Reference: [1] G. Birkhoff: On product integration.J. Math. and Phys. 16 (1937), 104–132. Zbl 0018.13402, 10.1002/sapm1937161104
Reference: [2] W. M. Boothby: An introduction to differentiable manifolds and Riemannian geometry.Second Edition, Academic Press, New York, 1986. Zbl 0596.53001, MR 0861409
Reference: [3] N. Bourbaki: Variétes différentielles et analytiques.Fascicule de résultats, Diffusion CCLS, Paris, 1982.
Reference: [4] N. Bourbaki: Groupes et algèbres de Lie.Chapitres 2 et 3, Diffusion CCLS, Paris, 1982. Zbl 0505.22006
Reference: [5] J. D. Dollard, C. N. Friedman: Product Integration with Applications to Differential Equations.Addison-Wesley Publishing Company, Reading, Massachusetts, 1979. MR 0552941
Reference: [6] J.-F. Hamilton: Multiplicative Riemann integration and logarithmic differentiation in Lie algebras and Lie groups.Doctoral dissertation, Indiana University, 1973.
Reference: [7] M. Hausner, J. T. Schwartz: Lie Groups; Lie Algebras.Gordon and Breach, Science Publishers, Inc., Great Britain, 1968. MR 0235065
Reference: [8] R. Henstock: Lectures on the Theory of Integration.World Scientific, Singapore, 1988. Zbl 0668.28001, MR 0963249
Reference: [9] R. Henstock: General Theory of Integration.Clarendon Press, Oxford, 1991. Zbl 0745.26006, MR 1134656
Reference: [10] J. Jarník, J. Kurzweil: A general form of the product integral and linear ordinary differential equations.Czechoslovak Math. J. 37 (1987), 642–659. MR 0913996
Reference: [11] K. Kuratowski: Topology I.Academic Press, London, 1966. MR 0217751
Reference: [12] J. Kurzweil: Nichtabsolut konvergente Integrale.Teubner-Texte zur Mathematik no 26, Leipzig, 1980. Zbl 0441.28001, MR 0597703
Reference: [13] R. M. McLeod: The generalized Riemann integral.Carus Mathematical Monographs no 20, Mathematical Association of America, 1980. Zbl 0486.26005, MR 0588510
Reference: [14] Y. Matsuchima: Differentiable Manifolds.Marcel Dekker, Inc., New York, 1972. MR 0346831
Reference: [15] D. Montgomery, L. Zippin: Topological Transformation Groups.Interscience Publishers, New York, 1955. MR 0073104
Reference: [16] P. Morales: Product integral for finite-dimensional Lie algebra-valued functions.Proc. Workshop on Functional Integration with emphasis on the Feynman Integral, Sherbrooke, Québec, Canada 1986, Suppl. Rend. Circ. Mat. Palermo 17 (1987), 313–329. MR 0950422
Reference: [17] G. Rasch: Zur Theorie und Anwendung des Produktintegrals.J. Reine Angew. Math. 191 (1934), 65–119. Zbl 0009.16503
Reference: [18] L. Schlesinger: Neue Grundlagen für einen Infinitesimalkalkül der Matrizen.Math. Z. 33 (1931), 33–61. 10.1007/BF01174342
Reference: [19] L. Schlesinger: Weitere Beiträge zum Infinitesimalkalkül der Matrizen.Math. Z. 35 (1932), 485–501. Zbl 0004.24701, MR 1545305, 10.1007/BF01186565
Reference: [20] V. S. Varadarajan: Lie Groups, Lie Algebras and their Representations.Prentice-Hall, Inc., New Jersey, 1974. Zbl 0371.22001, MR 0376938
Reference: [21] V. Volterra: Sulla teoria delle equazioni differenziali lineari.Rend. Circ. Mat. Palermo 2 (1888), 69–75. 10.1007/BF03018073
Reference: [22] V. Volterra, B. Hostinsky: Opérations infinitésimales linéaires.Gauthier-Villars, Paris, 1938.
Reference: [23] F. W. Warner: Foundations of Differentiable Manifold and Lie groups.Springer-Verlag, New York, 1983. MR 0722297
.

Files

Files Size Format View
CzechMathJ_43-1993-2_16.pdf 1.956Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo