Title:
|
A note on joint capacities in Banach algebras (English) |
Author:
|
Müller, Vladimír |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
43 |
Issue:
|
2 |
Year:
|
1993 |
Pages:
|
367-372 |
. |
Category:
|
math |
. |
MSC:
|
46H05 |
MSC:
|
47A13 |
idZBL:
|
Zbl 0808.46063 |
idMR:
|
MR1211758 |
DOI:
|
10.21136/CMJ.1993.128409 |
. |
Date available:
|
2009-09-24T09:31:04Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128409 |
. |
Reference:
|
[1] P.R. Halmos: Capacity in Banach algebras.Indiana Univ. Math. J. 20 (1971), 855–863. Zbl 0196.14803, MR 0268672, 10.1512/iumj.1971.20.20067 |
Reference:
|
[2] R. Harte: Tensor products, multiplication operators and the spectral mapping theorem.Proc. Roy. Irish Acad. Sect. A 73 (1973), 285–302. Zbl 0265.47034, MR 0328642 |
Reference:
|
[3] R. Levi: Notes on the Taylor joint spectrum of commuting operators.Spectral Theory, Banach Center Publications Vol. 8, 1982, pp. 321–332. Zbl 0496.47017, MR 0738292 |
Reference:
|
[4] J. Siciak: Extremal plurisubharmonic functions and capacities in ${C}^n$.Sophia Kokyuroku in Mathematics 14 (1982). |
Reference:
|
[5] A. Sołtysiak: Capacity of finite systems of elements in Banach algebras.Comm. Math. 19 yr1977, 405–411. MR 0477779 |
Reference:
|
[6] A. Sołtysiak: Some remarks on the joint capacities in Banach algebras.Comm. Math. 20 (1977), 197–204. MR 0463939 |
Reference:
|
[7] A. Sołtysiak: On a certain class of subspectra.Comm. Math. Univ. Carolinae (to appear). |
Reference:
|
[8] D.S.G. Stirling: Perturbations of operators which leave capacity invariant.J. London Math. Soc. 10 (1975), 75–78. Zbl 0297.47001, MR 0367697, 10.1112/jlms/s2-10.1.75 |
Reference:
|
[9] D.S.G. Stirling: The joint capacity of elements of Banach algebras.J. London Math. Soc. 10 (1975), 212–218. Zbl 0302.46035, MR 0370195, 10.1112/jlms/s2-10.2.212 |
Reference:
|
[10] V.P. Zakharyuta: Transfinite diameter, Tshebyshev constant and a capacity of a compact set in ${C}^n$.Mat. Sb. 96 (1975), 374–389. (Russian) |
Reference:
|
[11] W. .Zelazko: Axiomatic approach to joint spectra I..Studia Math. 64 (1979), 249–261. Zbl 0426.47002, MR 0544729, 10.4064/sm-64-3-249-261 |
. |