Previous |  Up |  Next

Article

Title: Dimension and attached primes of an Artinian module (English)
Author: Tiraş, Yücel
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 43
Issue: 2
Year: 1993
Pages: 265-269
.
Category: math
.
MSC: 13C15
MSC: 13E10
idZBL: Zbl 0799.13009
idMR: MR1211748
DOI: 10.21136/CMJ.1993.128398
.
Date available: 2009-09-24T09:29:42Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128398
.
Reference: [1] D. Ferrand and M. Raynaud: Fibres formelles d’un anneau local Noetherian.Ann. Sci. Ec. Norm. Sup, $4^e$ serie t.3. (1970), 295–311. MR 0272779
Reference: [2] W. Heinzer and D. Lantz: Artinian modules and modules of which all proper submodules are finitely generated.J Algebra 95 (1985), 201–216. MR 0797663, 10.1016/0021-8693(85)90101-2
Reference: [3] D. Kirby: Coprimary decomposition of Artinian modules.J. London Math. Soc. 26 (1973), 571–576. Zbl 0254.13022, MR 0314822, 10.1112/jlms/s2-6.3.571
Reference: [4] D. Kirby: Dimension and length for Artinian modules.Quart. J. Math. Oxford (2) 41 (1990), 419–429. Zbl 0724.13015, MR 1081104, 10.1093/qmath/41.4.419
Reference: [5] I.G. Macdonald: Secondary representation of modules over a commutative ring.Symposia Mathematica 11 (1973), 23–43.. Zbl 0271.13001, MR 0342506
Reference: [6] H. Matsumara: Commutative Algebra.Q.A. Benjamin, Inc., 1970. MR 0266911
Reference: [7] H. Matsumara: Commutative Ring Theory.Cambridge University Press,, 1990.
Reference: [8] D.G. Northcott: Generalized Kozsul complexes and Artinian modules.Quart. J. Math. Oxford (2) 23 (1972), 289–297. MR 0327744, 10.1093/qmath/23.3.289
Reference: [9] K. Rentschler and P. Gabriel: Sur la dimension des anneaux et ensembles ordonnes.C.R. Acad. Sci. Paris 265 (1967), 712–715. MR 0224644
Reference: [10] R.N. Roberts: Krull dimension for Artinian modules over quasi-local commutative rings.Quart. J. Math. Oxford (3) 26 (1975), 269–273. Zbl 0311.13006, MR 0389884, 10.1093/qmath/26.1.269
Reference: [11] R.Y. Sharp: The Euler characteristic of a finitely generated module of finite injective dimension.Math. Z. 130 (1973), 79–93. Zbl 0237.13009, MR 0319977, 10.1007/BF01178979
Reference: [12] R.Y. Sharp: Secondary representation for injective modules over commutative Noetherian rings.Proceeding of the Edinburgh Mathematical Society, 2,20, 1976, pp. 143–151. MR 0414538
Reference: [13] R.Y. Sharp: A method for the study of Artinian modules, with an application to asymptotic behaviour.Mathematical Sciences Research Institute Publications, Springer-Verlag 15 (1989), 443–465. MR 1015534, 10.1007/978-1-4612-3660-3_25
Reference: [14] R.Y. Sharp: Steps in Commutative Algebra.Cambridge University Press, 1990. Zbl 0703.13001, MR 1070568
Reference: [15] D.W. Sharpe and P. Vamos: Injective Modules.Cambridge University Press, 1972. MR 0360706
.

Files

Files Size Format View
CzechMathJ_43-1993-2_7.pdf 520.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo