Previous |  Up |  Next

Article

Title: Cyclic extensions of the Medvedev ordered groups (English)
Author: Darnel, Michael R.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 43
Issue: 2
Year: 1993
Pages: 193-204
.
Category: math
.
MSC: 06F15
MSC: 20F60
idZBL: Zbl 0790.06018
idMR: MR1211742
DOI: 10.21136/CMJ.1993.128399
.
Date available: 2009-09-24T09:28:55Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128399
.
Reference: [B] Bergman, G.: Specially ordered Groups.Comm. Alg. 12 (1984), 2315–2333. Zbl 0506.06006, MR 0755918, 10.1080/00927878408823111
Reference: [BCD] Ball, R. N.; Conrad, P. F.; Darnel, M. R.: Above and below subgroups of a lattice-ordered group.Trans. Amer. Math. Soc. 259 (1980), 357–392. MR 0849464
Reference: [BKW] Bigard, A.; Keimel, K.; Wolfenstein, S.: Groupes et Anneaux Réticulés.Springer, 1977. MR 0552653
Reference: [C] Conrad, P.: Torsion radicals of lattice-ordered groups.Symposia Math. 21 (1977), 479–513. Zbl 0372.06011, MR 0465969
Reference: [CM] Conrad, P.; McAlister, D.: The completion of a lattice-ordered group.J. Austral. Math. Soc. 9 (1969), 182–209. MR 0249340, 10.1017/S1446788700005760
Reference: [D1] Darnel, M.: Special-valued $\ell $-groups and abelian covers.Order 4 (1987), 191–194. MR 0916494, 10.1007/BF00337696
Reference: [D2] Darnel, M.: Metabelian ordered groups with the infinite shifting property.in preparation.
Reference: [Gu1] Gurchenkov, S. A.: Coverings in the lattice of $\ell $-varieties.Mat. Zametki 35 (1984), 677-684. Zbl 0545.06008, MR 0750807
Reference: [Gu2] Gurchenkov, S. A.: Theory of varieties of lattice-ordered groups.Alg. i Logika 27(3) (1988), 249–273. Zbl 0679.20022, MR 0997958
Reference: [GK] Gurchenkov, S. A.; Kopytov, V. M.: On covers of the variety of abelian lattice-ordered groups.Siber. Math. J. 28 (1987). MR 0904635
Reference: [H] Holland, W. C.: Varieties of $\ell $-groups are torsion classes.Czech. Math. J. 29(104), 11-12. MR 0518135
Reference: [HR] Holland, W. C.; Reilly, N. R.: Metabelian varieties of $\ell $-groups which contain no non-abelian $o$-groups.Alg. Univ. 24 (1989), 203–204. MR 0931613
Reference: [Hu] Huss, M.: Varieties of lattice ordered groups, Ph.D. dissertation.Simon Fraser University, 1984.
Reference: [K] Kopytov, V. M.: Nonabelian varieties of lattice-ordered groups in which every solvable $\ell $-group is abelian.Mat. Sb. 126(168) (1985), 247–266, 287. MR 0784356
Reference: [Mc] McCleary, S. H.: The lateral completion of an arbitrary lattice-ordered group.Alg. Univ. 13 (1981), 251–263. Zbl 0427.06007, MR 0631560, 10.1007/BF02483838
Reference: [M] Medvedev, N. Ya.: Lattices of varieties of lattice-ordered groups and Lie groups.Alg. i Logika 16 (1977), 40–45, 123. MR 0498317
Reference: [R1] Reilly, N. R.: Varieties of lattice ordered groups that contain no non-abelian $o$-groups are solvable.Order 3 (1986), 287–297. Zbl 0616.06016, MR 0878925, 10.1007/BF00400292
Reference: [R2] Reilly, N. R.: personal communication to W. C. Holland..
Reference: [Sc] Scrimger, E. B.: A large class of small varieties of lattice-ordered groups.Proc. Amer. Math. Soc. 51 (1975), 301–306. Zbl 0312.06010, MR 0384644, 10.1090/S0002-9939-1975-0384644-7
Reference: [W] Weinberg, E.: Free lattice-ordered abelian groups, II.Math. Ann. 154 (1965), 217–222. Zbl 0138.26201, MR 0181668, 10.1007/BF01362439
.

Files

Files Size Format View
CzechMathJ_43-1993-2_1.pdf 1.123Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo