Title:
|
Cyclic extensions of the Medvedev ordered groups (English) |
Author:
|
Darnel, Michael R. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
43 |
Issue:
|
2 |
Year:
|
1993 |
Pages:
|
193-204 |
. |
Category:
|
math |
. |
MSC:
|
06F15 |
MSC:
|
20F60 |
idZBL:
|
Zbl 0790.06018 |
idMR:
|
MR1211742 |
DOI:
|
10.21136/CMJ.1993.128399 |
. |
Date available:
|
2009-09-24T09:28:55Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128399 |
. |
Reference:
|
[B] Bergman, G.: Specially ordered Groups.Comm. Alg. 12 (1984), 2315–2333. Zbl 0506.06006, MR 0755918, 10.1080/00927878408823111 |
Reference:
|
[BCD] Ball, R. N.; Conrad, P. F.; Darnel, M. R.: Above and below subgroups of a lattice-ordered group.Trans. Amer. Math. Soc. 259 (1980), 357–392. MR 0849464 |
Reference:
|
[BKW] Bigard, A.; Keimel, K.; Wolfenstein, S.: Groupes et Anneaux Réticulés.Springer, 1977. MR 0552653 |
Reference:
|
[C] Conrad, P.: Torsion radicals of lattice-ordered groups.Symposia Math. 21 (1977), 479–513. Zbl 0372.06011, MR 0465969 |
Reference:
|
[CM] Conrad, P.; McAlister, D.: The completion of a lattice-ordered group.J. Austral. Math. Soc. 9 (1969), 182–209. MR 0249340, 10.1017/S1446788700005760 |
Reference:
|
[D1] Darnel, M.: Special-valued $\ell $-groups and abelian covers.Order 4 (1987), 191–194. MR 0916494, 10.1007/BF00337696 |
Reference:
|
[D2] Darnel, M.: Metabelian ordered groups with the infinite shifting property.in preparation. |
Reference:
|
[Gu1] Gurchenkov, S. A.: Coverings in the lattice of $\ell $-varieties.Mat. Zametki 35 (1984), 677-684. Zbl 0545.06008, MR 0750807 |
Reference:
|
[Gu2] Gurchenkov, S. A.: Theory of varieties of lattice-ordered groups.Alg. i Logika 27(3) (1988), 249–273. Zbl 0679.20022, MR 0997958 |
Reference:
|
[GK] Gurchenkov, S. A.; Kopytov, V. M.: On covers of the variety of abelian lattice-ordered groups.Siber. Math. J. 28 (1987). MR 0904635 |
Reference:
|
[H] Holland, W. C.: Varieties of $\ell $-groups are torsion classes.Czech. Math. J. 29(104), 11-12. MR 0518135 |
Reference:
|
[HR] Holland, W. C.; Reilly, N. R.: Metabelian varieties of $\ell $-groups which contain no non-abelian $o$-groups.Alg. Univ. 24 (1989), 203–204. MR 0931613 |
Reference:
|
[Hu] Huss, M.: Varieties of lattice ordered groups, Ph.D. dissertation.Simon Fraser University, 1984. |
Reference:
|
[K] Kopytov, V. M.: Nonabelian varieties of lattice-ordered groups in which every solvable $\ell $-group is abelian.Mat. Sb. 126(168) (1985), 247–266, 287. MR 0784356 |
Reference:
|
[Mc] McCleary, S. H.: The lateral completion of an arbitrary lattice-ordered group.Alg. Univ. 13 (1981), 251–263. Zbl 0427.06007, MR 0631560, 10.1007/BF02483838 |
Reference:
|
[M] Medvedev, N. Ya.: Lattices of varieties of lattice-ordered groups and Lie groups.Alg. i Logika 16 (1977), 40–45, 123. MR 0498317 |
Reference:
|
[R1] Reilly, N. R.: Varieties of lattice ordered groups that contain no non-abelian $o$-groups are solvable.Order 3 (1986), 287–297. Zbl 0616.06016, MR 0878925, 10.1007/BF00400292 |
Reference:
|
[R2] Reilly, N. R.: personal communication to W. C. Holland.. |
Reference:
|
[Sc] Scrimger, E. B.: A large class of small varieties of lattice-ordered groups.Proc. Amer. Math. Soc. 51 (1975), 301–306. Zbl 0312.06010, MR 0384644, 10.1090/S0002-9939-1975-0384644-7 |
Reference:
|
[W] Weinberg, E.: Free lattice-ordered abelian groups, II.Math. Ann. 154 (1965), 217–222. Zbl 0138.26201, MR 0181668, 10.1007/BF01362439 |
. |