Previous |  Up |  Next

Article

Title: Local properties and upper embeddability of connected multigraphs (English)
Author: Nebeský, Ladislav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 43
Issue: 2
Year: 1993
Pages: 241-248
.
Category: math
.
MSC: 05C10
idZBL: Zbl 0787.05030
idMR: MR1211746
DOI: 10.21136/CMJ.1993.128407
.
Date available: 2009-09-24T09:29:27Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128407
.
Reference: [1] M. Behzad, G. Chartrand, L. Lesniak-Foster: Graphs $\&$ Digraphs.Prindle, Weber $\&$ Schmidt, Boston, 1979. MR 0525578
Reference: [2] G. Chartrand, R. E. Pippert: Locally connected graphs.Časopis pěst. mat. 99 (1974), 158–163. MR 0398872
Reference: [3] A. D. Glukhov: On chord-critical graphs.In: Some Topological and Combinatorial Properties of Graphs, Preprint 80.8, IM AN USSR, Kiev, 1980, pp. 24–27. (Russian) MR 0583198
Reference: [4] N. P. Homenko, A. D. Glukhov: One-component 2-cell embeddings and the maximum genus of a graph.In: Some Topological and Combinatorial Properties of Graphs, Preprint 80.8, IM AN USSR, Kiev, 1980, pp. 5–23. (Russian) MR 0583197
Reference: [5] N. P. Homenko, N. A. Ostroverkhy, V. A. Kusmenko: The maximum genus of graphs.In: $\phi $-Transformations of Graphs, N. P. Homenko (ed.), IM AN USSR, Kiev, 1973, pp. 180–210. (Ukrainian, English summary) MR 0422065
Reference: [6] M. Jungerman: A characterization of upper embeddable graphs.Trans. Amer. Math. Soc. 241 (1978), 401–406. Zbl 0379.05025, MR 0492309
Reference: [7] L. Nebeský: A new characterization of the maximum genus of a graph.Czechoslovak Math. J. 31 (106) (1981), 604–613. MR 0631605
Reference: [8] L. Nebeský: On locally quasiconnected graphs and their upper embeddability.Czechoslovak Math. J. 35 (110) (1985), 162–166. MR 0779344
Reference: [9] L. Nebeský: $N_2$-locally connected graphs and their upper embeddability.Czechoslovak Math. J. 41 (116) (1991), 731–735. MR 1134962
Reference: [10] R. Nedela, M. Škoviera: On graphs embeddable with short faces.In: Topics in Combinatorics and Graph Theory, R. Bodendiek, R. Henn (eds.), Physica-Verlag, Heidelberg, 1990, pp. 519–529. MR 1100074
Reference: [11] Z. Ryjáček: On graphs with isomorphic, non-isomorphic and connected $N_2$-neighbourhoods.Časopis pěst. mat. 12 (1987), 66–79.
Reference: [12] A. T. White: Graphs, Groups, and Surfaces.North-Holland, Amsterdam, 1973. Zbl 0268.05102
Reference: [13] N. H. Xuong: How to determine the maximum genus of a graph.J. Combinatorial Theory Ser. B 26 (1979), 217–225. Zbl 0403.05035, MR 0532589, 10.1016/0095-8956(79)90058-3
.

Files

Files Size Format View
CzechMathJ_43-1993-2_5.pdf 996.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo