Title:
|
Asymptotic intertwining and spectral inclusions on Banach spaces (English) |
Author:
|
Laursen, K. B. |
Author:
|
Neumann, M. M. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
43 |
Issue:
|
3 |
Year:
|
1993 |
Pages:
|
483-497 |
. |
Category:
|
math |
. |
MSC:
|
47A10 |
MSC:
|
47A11 |
MSC:
|
47B40 |
idZBL:
|
Zbl 0806.47001 |
idMR:
|
MR1249616 |
DOI:
|
10.21136/CMJ.1993.128413 |
. |
Date available:
|
2009-09-24T09:32:35Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128413 |
. |
Reference:
|
[1] E. Albrecht: An example of a weakly decomposable operator, which is not decomposable, Rev. Roumaine Math. Pures Appl..20 (1975), 855–861. MR 0377582 |
Reference:
|
[2] E. Albrecht: On decomposable operators.Integral Equations and Operator Theory 2 (1979), 1–10. Zbl 0421.47014, MR 0532735, 10.1007/BF01729357 |
Reference:
|
[3] E. Albrecht and J. Eschmeier: Analytic functional models and local spectral theory.Preprint University of Saarbrücken and University of Münster, 1991. MR 1455859 |
Reference:
|
[4] E. Albrecht, J. Eschmeier and M. M. Neumann: Some topics in the theory of decomposable operators.in: Advances in invariant subspaces and other results of operator theory, Operator Theory: Advances and Applications, vol. 17, Birkhäuser Verlag, Basel, 1986, pp. 15–34. MR 0901056 |
Reference:
|
[5] S. K. Berberian: Lectures in functional analysis and operator theory.Springer-Verlag, New York, 1974. Zbl 0296.46002, MR 0417727 |
Reference:
|
[6] E. Bishop: A duality theorem for an arbitrary operator.Pacific J. Math. 9 (1959), 379–397. Zbl 0086.31702, MR 0117562, 10.2140/pjm.1959.9.379 |
Reference:
|
[7] S. Clary: Equality of spectra of quasi-similar operators.Proc. Amer. Math. Soc. 53 (1975), 88–90. MR 0390824, 10.1090/S0002-9939-1975-0390824-7 |
Reference:
|
[8] I. Colojoară and C. Foiaş: Theory of generalized spectral operators.Gordon and Breach, New York, 1968. MR 0394282 |
Reference:
|
[9] C. Davis and P. Rosenthal: Solving linear operator equations.Can. J. Math. 26 (1974), 1384–1389. MR 0355649, 10.4153/CJM-1974-132-6 |
Reference:
|
[10] J. Eschmeier: Operator decomposability and weakly continuous representations of locally compact abelian groups.J. Operator Theory 7 (1982), 201–208. Zbl 0489.47019, MR 0658608 |
Reference:
|
[11] J. Eschmeier: Analytische Dualität und Tensorprodukte in der mehrdimensionalen Spektraltheorie, Habilitationsschrift, Schriftenreihe des Mathematischen Instituts der Universität Münster, 2. Serie, Heft 42.Münster, 1987. MR 0876484 |
Reference:
|
[12] J. Eschmeier and B. Prunaru: Invariant subspaces for operators with Bishop’s property $(\beta )$ and thick spectrum.J. Functional Analysis 94 (1990), 196–222. MR 1077551, 10.1016/0022-1236(90)90034-I |
Reference:
|
[13] L. A. Fialkow: A note on quasisimilarity of operators.Acta Sci. Math. (Szeged) 39 (1977), 67–85. Zbl 0364.47020, MR 0445319 |
Reference:
|
[14] P. R. Halmos: A Hilbert space problem book.Van NostrandNew York, 1967. Zbl 0144.38704, MR 0208368 |
Reference:
|
[15] T. B. Hoover: Quasisimilarity of operators.Illinois J. Math. 16 (1972), 678–686. MR 0312304, 10.1215/ijm/1256065551 |
Reference:
|
[16] K. B. Laursen: Operators with finite ascent.Pacific J . Math. 152 (1992), 323–336. Zbl 0783.47028, MR 1141799, 10.2140/pjm.1992.152.323 |
Reference:
|
[17] K. B. Laursen and M. M. Neumann: Decomposable multipliers and applications to harmonic analysis.Studia Math. 101 (1992), 193–214. MR 1149572, 10.4064/sm-101-2-193-214 |
Reference:
|
[18] K. B. Laursen and M. M. Neumann: Local spectral properties of multipliers on Banach algebras.Arch. Math. 58 (1992), 368–375. MR 1152625, 10.1007/BF01189927 |
Reference:
|
[19] K. B. Laursen and P. Vrbová: Some remarks on the surjectivity spectrum of linear operators.Czech. Math. J. 39 (114) (1989), 730–739. MR 1018009 |
Reference:
|
[20] M. Putinar: Hyponormal operators are subscalar.J. Operator Theory 12 (1984), 385–395. Zbl 0573.47016, MR 0757441 |
Reference:
|
[21] M. Rosenblum: On the operator equation $BX - XA = Q$.Duke Math. J. 23 (1956), 263–269. Zbl 0073.33003, MR 0079235, 10.1215/S0012-7094-56-02324-9 |
Reference:
|
[22] W. Rudin: Fourier analysis on groups.Interscience Publishers, New York, 1962. Zbl 0107.09603, MR 0152834 |
Reference:
|
[23] J. G. Stampfli: Quasi-similarity of operators.Proc. Royal Irish Acad. Sect. A 81 (1981), 109–119. MR 0635584 |
Reference:
|
[24] F.-H. Vasilescu: Analytic functional calculus and spect ral decompositions.Editura Academiei and D. Reidel Publishing Company, Bucureşti and Dordrecht, 1982. |
Reference:
|
[25] P. Vrbová: On local spectral properties of operators in Banach spaces.Czech. Math. J. 23 (98) (1973), 483–492. MR 0322536 |
Reference:
|
[26] M. Zafran: On the spectra of multipliers.Pacific J. Math. 47 (1973), 609–626. Zbl 0242.43006, MR 0326309, 10.2140/pjm.1973.47.609 |
. |