Previous |  Up |  Next

Article

References:
[1] E. Albrecht: An example of a weakly decomposable operator, which is not decomposable, Rev. Roumaine Math. Pures Appl. 20 (1975), 855–861. MR 0377582
[2] E. Albrecht: On decomposable operators. Integral Equations and Operator Theory 2 (1979), 1–10. DOI 10.1007/BF01729357 | MR 0532735 | Zbl 0421.47014
[3] E. Albrecht and J. Eschmeier: Analytic functional models and local spectral theory. Preprint University of Saarbrücken and University of Münster, 1991. MR 1455859
[4] E. Albrecht, J. Eschmeier and M. M. Neumann: Some topics in the theory of decomposable operators. in: Advances in invariant subspaces and other results of operator theory, Operator Theory: Advances and Applications, vol. 17, Birkhäuser Verlag, Basel, 1986, pp. 15–34. MR 0901056
[5] S. K. Berberian: Lectures in functional analysis and operator theory. Springer-Verlag, New York, 1974. MR 0417727 | Zbl 0296.46002
[6] E. Bishop: A duality theorem for an arbitrary operator. Pacific J. Math. 9 (1959), 379–397. DOI 10.2140/pjm.1959.9.379 | MR 0117562 | Zbl 0086.31702
[7] S. Clary: Equality of spectra of quasi-similar operators. Proc. Amer. Math. Soc. 53 (1975), 88–90. DOI 10.1090/S0002-9939-1975-0390824-7 | MR 0390824
[8] I. Colojoară and C. Foiaş: Theory of generalized spectral operators. Gordon and Breach, New York, 1968. MR 0394282
[9] C. Davis and P. Rosenthal: Solving linear operator equations. Can. J. Math. 26 (1974), 1384–1389. DOI 10.4153/CJM-1974-132-6 | MR 0355649
[10] J. Eschmeier: Operator decomposability and weakly continuous representations of locally compact abelian groups. J. Operator Theory 7 (1982), 201–208. MR 0658608 | Zbl 0489.47019
[11] J. Eschmeier: Analytische Dualität und Tensorprodukte in der mehrdimensionalen Spektraltheorie, Habilitationsschrift, Schriftenreihe des Mathematischen Instituts der Universität Münster, 2. Serie, Heft 42. Münster, 1987. MR 0876484
[12] J. Eschmeier and B. Prunaru: Invariant subspaces for operators with Bishop’s property $(\beta )$ and thick spectrum. J. Functional Analysis 94 (1990), 196–222. DOI 10.1016/0022-1236(90)90034-I | MR 1077551
[13] L. A. Fialkow: A note on quasisimilarity of operators. Acta Sci. Math. (Szeged) 39 (1977), 67–85. MR 0445319 | Zbl 0364.47020
[14] P. R. Halmos: A Hilbert space problem book. Van NostrandNew York, 1967. MR 0208368 | Zbl 0144.38704
[15] T. B. Hoover: Quasisimilarity of operators. Illinois J. Math. 16 (1972), 678–686. MR 0312304
[16] K. B. Laursen: Operators with finite ascent. Pacific J . Math. 152 (1992), 323–336. DOI 10.2140/pjm.1992.152.323 | MR 1141799 | Zbl 0783.47028
[17] K. B. Laursen and M. M. Neumann: Decomposable multipliers and applications to harmonic analysis. Studia Math. 101 (1992), 193–214. MR 1149572
[18] K. B. Laursen and M. M. Neumann: Local spectral properties of multipliers on Banach algebras. Arch. Math. 58 (1992), 368–375. DOI 10.1007/BF01189927 | MR 1152625
[19] K. B. Laursen and P. Vrbová: Some remarks on the surjectivity spectrum of linear operators. Czech. Math. J. 39 (114) (1989), 730–739. MR 1018009
[20] M. Putinar: Hyponormal operators are subscalar. J. Operator Theory 12 (1984), 385–395. MR 0757441 | Zbl 0573.47016
[21] M. Rosenblum: On the operator equation $BX - XA = Q$. Duke Math. J. 23 (1956), 263–269. DOI 10.1215/S0012-7094-56-02324-9 | MR 0079235 | Zbl 0073.33003
[22] W. Rudin: Fourier analysis on groups. Interscience Publishers, New York, 1962. MR 0152834 | Zbl 0107.09603
[23] J. G. Stampfli: Quasi-similarity of operators. Proc. Royal Irish Acad. Sect. A 81 (1981), 109–119. MR 0635584
[24] F.-H. Vasilescu: Analytic functional calculus and spect ral decompositions. Editura Academiei and D. Reidel Publishing Company, Bucureşti and Dordrecht, 1982.
[25] P. Vrbová: On local spectral properties of operators in Banach spaces. Czech. Math. J. 23 (98) (1973), 483–492. MR 0322536
[26] M. Zafran: On the spectra of multipliers. Pacific J. Math. 47 (1973), 609–626. DOI 10.2140/pjm.1973.47.609 | MR 0326309 | Zbl 0242.43006
Partner of
EuDML logo