Previous |  Up |  Next

Article

Title: Free locally inverse *-semigroups (English)
Author: Auinger, Karl
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 43
Issue: 3
Year: 1993
Pages: 523-545
.
Category: math
.
MSC: 20M05
MSC: 20M07
MSC: 20M17
idZBL: Zbl 0796.20044
idMR: MR1249620
DOI: 10.21136/CMJ.1993.128418
.
Date available: 2009-09-24T09:33:06Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128418
.
Reference: [1] C. L. Adair: Bands with involution.J. Algebra 75 (1982), 297–314. MR 0653894, 10.1016/0021-8693(82)90042-4
Reference: [2] K. Auinger: Bifree objects in $e$-varieties of strict orthodox semigroups and the lattice of strict orthodox $*$-semigroup varieties.Glasgow Math. J. (to appear). MR 1199935
Reference: [3] K. Auinger: Strict regular $*$-semigroups.Proceedings of the 1991 Oberwolfach Semigroup Conference (to appear). MR 1197855
Reference: [4] A. H. Clifford: The free completely regular semigroup on a set.J. Algebra 59 (1979), 434–451. Zbl 0462.20047, MR 0543262, 10.1016/0021-8693(79)90139-X
Reference: [5] J. A. Gerhard and M. Petrich: Free bands and free $*$-bands.Glasgow Math. J. 28 (1986), 161–179. MR 0848423, 10.1017/S0017089500006480
Reference: [6] J. A. Gerhard and M. Petrich: Free involutorial completely simple semigroups.Can. J. Math. 37 (1985), 271–295. MR 0780625, 10.4153/CJM-1985-017-9
Reference: [7] T. E. Hall: Identities for existence varieties of regular semigroups.Bull. Austral. Math. Soc. 40 (1989), 59–77. Zbl 0666.20028, MR 1020841, 10.1017/S000497270000349X
Reference: [8] T. E. Hall: Regular semigroups: amalgamation and the lattice of existence varieties.Algebra Universalis 28 (1991), 79–108. Zbl 0727.20041, MR 1083823, 10.1007/BF01190413
Reference: [9] J. M. Howie: An Introduction to Semigroup Theory.Academic Press, London, 1976. Zbl 0355.20056, MR 0466355
Reference: [10] H. Mitsch: A natural partial order for semigroups.Proc. Amer. Math. Soc. 97 (1986), 384–388. Zbl 0596.06015, MR 0840614, 10.1090/S0002-9939-1986-0840614-0
Reference: [11] K. S. S. Nambooripad: The natural partial order on a regular semigroup.Proc. Edinburgh Math. Soc. 23 (1980), 249–260. Zbl 0459.20054, MR 0620922
Reference: [12] K. S. S. Nambooripad and F. Pastijn: Regular involution semigroups.Semigroups, Coll. Math. Soc. János Bolyai 39 (1986), 199–249. MR 0873153
Reference: [13] T. E. Nordahl and H. E. Scheiblich: Regular $*$-semigroups.Semigroup Forum 16 (1978), 369–377. MR 0507171, 10.1007/BF02194636
Reference: [14] F. Pastijn: The structure of pseudo-inverse semigroups.Trans. Amer. Math. Soc. 273 (1982), 631–655. Zbl 0512.20042, MR 0667165, 10.1090/S0002-9947-1982-0667165-1
Reference: [15] F. Pastijn: Rectangular bands of inverse semigroups.Simon Stevin 56 (1982), 1–97. Zbl 0499.20038, MR 0662981
Reference: [16] M. Petrich: Certain varieties of completely regular $*$-semigroups.Boll. Un. Mat. It. 4(B) (1985), 343–370. MR 0805417
Reference: [17] M. Petrich: Inverse Semigroups.Wiley, New York, 1984. Zbl 0546.20053, MR 0752899
Reference: [18] L. Polák: Varieties of unary semigroups..
Reference: [19] B. Pondělíček: On varieties of regular $*$-semigroups.Czechoslovak Math. J. 41 (1991), 110–119. MR 1087630
Reference: [20] H. E. Scheiblich: Free inverse semigroups.Proc. Amer. Math. Soc. 38 (1973), 1–7. Zbl 0256.20079, MR 0310093, 10.1090/S0002-9939-1973-0310093-1
Reference: [21] H. E. Scheiblich: Generalized inverse semigroups with involution.Rocky Mountain J. Math. 12 (1982), 205–211. Zbl 0504.20040, MR 0661728, 10.1216/RMJ-1982-12-2-205
Reference: [22] B. M. Schein: Free inverse semigroups are not finitely presentable.Acta Math. Acad. Sci. Hung. 26 (1975), 41–52. Zbl 0301.20041, MR 0360878, 10.1007/BF01895947
Reference: [23] M. B. Szendrei: Free $*$-orthodox semigroups.Simon Stevin 59 (1985), 175–201. MR 0805105
Reference: [24] M. B. Szendrei: A new interpretation of free orthodox and generalized inverse $*$-semigroups.Springer Lecture Notes 1320 (1986), 358–371. MR 0957780
.

Files

Files Size Format View
CzechMathJ_43-1993-3_13.pdf 2.014Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo