Previous |  Up |  Next

Article

Title: Weak and extra-weak type inequalities for the maximal operator and the Hilbert transform (English)
Author: Gogatishvili, Amiran
Author: Pick, Luboš
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 43
Issue: 3
Year: 1993
Pages: 547-566
.
Category: math
.
MSC: 42B25
MSC: 46E30
MSC: 47B38
MSC: 47G10
idZBL: Zbl 0798.42009
idMR: MR1249621
DOI: 10.21136/CMJ.1993.128412
.
Date available: 2009-09-24T09:33:14Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128412
.
Reference: [1] R.J. Bagby: Weak bounds for the maximal function in weighted Orlicz spaces.Studia Math. 95 (1990), 195–204. Zbl 0718.42018, MR 1060723, 10.4064/sm-95-3-195-204
Reference: [2] A. Carbery, S.-Y.A. Chang and J. Garnett: Weights and $L\log L$.Pacific J. Math. 120-1 (1985), 33–45. MR 0808927
Reference: [3] R.R. Coifman: Distribution function inequalities for singular integrals.Proc. Nat. Acad. Sci. USA 69 (1972), 2838–2839. Zbl 0243.44006, MR 0303226, 10.1073/pnas.69.10.2838
Reference: [4] R.R. Coifman and C. Fefferman: Weighted norm inequalities for maximal functions and singular integrals.Studia Math. 51 (1974), 241–250. MR 0358205, 10.4064/sm-51-3-241-250
Reference: [5] N. Fujii: Weighted bounded mean oscillation and singular integrals.Math. Japonica 22-5 (1978), 529–534. Zbl 0385.26010, MR 0481968
Reference: [6] D. Gallardo: Weighted weak type integral inequalities for the Hardy-Littlewood maximal operator.Israel J. Math. 67-1 (1989), 95–108. Zbl 0683.42021, MR 1021364
Reference: [7] J. García-Cuerva and J.L. Rubio de Francia: Weighted norm inequalities and related topics.North Holland, Amsterdam, 1985. MR 0807149
Reference: [8] J.B. Garnett: Bounded analytic functions.Academic Press, New York-etc., 1981. Zbl 0469.30024, MR 0628971
Reference: [9] A. Gogatishvili: Riesz transforms and maximal functions in $\phi (L)$ classes.Bull. Acad. Sci. Georgian SSR 137-3 (1990), 489–492. Zbl 0716.44004, MR 1087544
Reference: [10] A. Gogatishvili, V. Kokilashvili and M. Krbec: Maximal functions and $\phi (L)$ classes.Dokl. Akad. Nauk SSSR 314-3 (1990), 534–536. MR 1094013
Reference: [11] S. Hruščev: A description of weights satisfying the $A_\infty $ condition of Muckenhoupt.Proc. Amer. Math. Soc. 90-2 (1984), 253–257. MR 0727244
Reference: [12] R. A. Kerman and A. Torchinsky: Integral inequalities with weights for the Hardy maximal function.Studia Math. 71 (1982), 277–284. MR 0667316, 10.4064/sm-71-3-277-284
Reference: [13] V. M. Kokilashvili: Maximal inequalities and multipliers in weighted Lizorkin-Triebel spaces.Soviet Math. Dokl. 19-2 (1978), 272–275. Zbl 0396.46034
Reference: [14] M. A. Krasnosel’skii and Ya. B. Rutitskii: Convex functions and Orlicz spaces.Noordhoff, Groningen, 1961.
Reference: [15] M. Krbec: Two weights weak type inequalities for the maximal function in the Zygmund class.Function Spaces and Applications. Proc. Conf. Lund 1986, M. Cwikel et al. (eds.), Lecture Notes in Math. 1302, Springer, Berlin-etc., 1988, pp. 317–320. MR 0942276
Reference: [16] B. Muckenhoupt: Weighted norm inequalities for the Hardy maximal function.Trans. Amer. Math. Soc. 165 (1972), 207–227. Zbl 0236.26016, MR 0293384, 10.1090/S0002-9947-1972-0293384-6
Reference: [17] L. Pick: Two weights weak type inequality for the maximal function in $L(\log ^+L)^K$.Constructive Theory of Functions. Proc. Conf. Varna 1987, B. Sendov et al. (eds.), Publ. House Bulg. Acad. Sci., Sofia, 1988, pp. 377–381. MR 0994864
Reference: [18] L. Pick: Two-weight weak type maximal inequalities in Orlicz classes.Studia Math. 100-3 (1991), 207–218. Zbl 0752.42012, MR 1133385
Reference: [19] E. M. Stein: Singular integrals and the differentiability properties of functions.Academic Press, Princeton, 1970. MR 0290095
.

Files

Files Size Format View
CzechMathJ_43-1993-3_14.pdf 2.038Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo