[3] HARDY G. H.-WRIGHT E. M.: 
An Introduction to the Theory of Numbers. Claredon Press, Oxford, 1954. 
MR 0067125 | 
Zbl 0058.03301 
[4] KOSTYRKO P.-MACAJ M.-ŠALÁT T.: Statistical convergence and $\Cal J$-convergence. (To appear).
[5] NIVEN I.-ZUCKERMAN H. S.: 
An Introduction to the Theory of Numbers. John Willey, New York-London-Sidney, 1967. 
MR 0195783 
[6] OSTMANN H. H.: 
Additive Zahlentheorie I. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956. 
MR 0098721 | 
Zbl 0072.03101 
[7] POWEL B. J.-ŠALÁT T.: 
Convergence of subseries of the harmonic series and asymptotic densities of sets of positive integers. Publ. Inst. Math. (Beograd) (N.S.) 50 (1991), 60-70. 
MR 1252159 
[8] 
		
Problem E 1058 [1953, 188]. Proposed by Perisastri, M. Solution by Briggs, W, E., Amer. Math. Monthly 60 (1953), 628-629. 
MR 1528556 
[9] 
		Problem E 2946 [1982, 333]. Proposed by Simion, R. and Schmidt, F. W. Solution by Niven, I., Amer. Math. Monthly 91 (1984), 650.
[11] SALAT T.: 
On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980), 139-150. 
MR 0587239 | 
Zbl 0437.40003 
[12] SCHINZEL A.-ŠALÁT T.: 
Remarks on maximum and minimum exponents in factoring. Math. Slovaca 44 (1994), 505-514. 
MR 1338424 | 
Zbl 0821.11004 
[13] SCHOENBERG I. J.: 
The integrability of certain functions and related summability methods. Amer. Math. Monthly 66 (1959), 361-375. 
MR 0104946 | 
Zbl 0089.04002