Previous |  Up |  Next

Article

Title: On fixed point theorems for absolute retracts (English)
Author: Bugajewski, Dariusz
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 51
Issue: 4
Year: 2001
Pages: 459-467
.
Category: math
.
MSC: 47H09
MSC: 47H10
MSC: 54H25
idZBL: Zbl 0994.47053
idMR: MR1864113
.
Date available: 2009-09-25T14:03:46Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/129380
.
Reference: [1] ARONSZAJN, N-PANITCHPAKDI P.: Extensions of uniformly continuous transformations and hyperconvex metric spaces.Pacific J. Math. 6 (1956), 405-439. MR 0084762
Reference: [2] BAILLON J. B. : Nonexpansive mappings and hyperconvex spaces.In: Fixed Point Theory and its Applications (R. F. Brown, ed.), Contemp. Math. 72, Amer. Math. Soc, Providence, RI, 1988, pp. 11-19. MR 0956475
Reference: [3] BANAS J.-GOEBEL K.: Measures of Noncompactness in Banach Spaces.Lecture Notes in Pure and Appl. Math. 60, Marcel Dekker, New York-Basel, 1980. Zbl 0441.47056, MR 0591679
Reference: [4] BUGAJEWSKI D.: Some remarks on KuratowskVs measure of noncompactness in vector spaces with a metric.Comment. Math. Prace Mat. 32 (1992), 5-9. MR 1202752
Reference: [5] BUGAJEWSKI D.: On the existence of weak solutions of integral equations in Banach spaces.Comment. Math. Univ. Carolin. 35 (1994), 35-41. Zbl 0816.45012, MR 1292580
Reference: [6] BUGAJEWSKI D.: Fixed point theorems in hyperconvex spaces revisited.In: Advanced Topics in Nonlinear Operator Theory (R. P. Agarwal, D. O'Regan, eds.) Math. Comput. Modelling 32 (2000), 1457-1461; (Faculty of Mathematics and Computer Sciences, Adam Mickiewicz University, Poznaii, Poland, Report no. 85/1998). MR 1800668
Reference: [7] BUGAJEWSKI D.-GRZELACZYK E.: A fixed point theorem in hyperconvex spaces.Arch. Math. 25 (2000), 395-400; (Faculty of Mathematics and Computer Sciences, Adam Mickiewicz University, Poznari, Poland, Report no. 84/1998). MR 1785449
Reference: [8] DARBO G.: Punti uniti in transformazioni a condominio non compatto.Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92. MR 0070164
Reference: [9] DUGUNDJI J.-GRANAS A.: Fixed Point Theory.Vol. I, PWN, Warsaw, 1982. Zbl 0483.47038, MR 0660439
Reference: [10] ESPINOLA-GARCIA R.: Darbo-Sadovski's theorem, in hyperconvex spaces.In: The Proceedings of the Workshop: Functional Analysis: Methods and Applications, Camigliatello Silano, May 29-June 2 1995. Rend. Circ. Mat. Palermo (2) Suppl. 40 (1996), 129-137. MR 1407086
Reference: [11] FURI M.-VIGNOLI A.: On a property of the unit sphere in a linear normed space.Bull. Polish Acad. Sci. Math. 18 (1970), 333-334. Zbl 0194.43501, MR 0264373
Reference: [12] GORNIEWICZ L.-ROZPLOCH-NOWAKOWSKA D.: On the Schauder fixed point theorem.In: Topology in Nonlinear Analysis. Banach Center Publ. Vol. 35, Polish Acad. Sci., Warsaw, pp. 207-219. Zbl 0852.55005, MR 1448438
Reference: [13] ISBELL J. R.: Six theorems about injective metric spaces.Comment. Math. Helv. 39 (1964/1965), 65-74. Zbl 0151.30205, MR 0182949
Reference: [14] KRASNOSEL'SKII M. A.: Two remarks on the method of successive approximations.Uspekhi Mat. Nauk 10 (1955), 123-127. (Russian) MR 0068119
Reference: [15] SADOVSKI B. N.: A fixed point principle.Funktsional. Anal. i Prilozhen. 1 (1967), 74-76.
Reference: [16] SADOVSKI B. N.: Limit-compact and condensing mappings.In: Math. Surveys Monographs 27, Amer. Math. Soc, Providence, RI, 1972, pp. 85-155. (Russian) MR 0428132
Reference: [17] SZUFLA S.: On the applications of measure of noncompactness to existence theorems.Rend. Sem. Mat. Univ. Padova 75 (1986), 1-14. MR 0847653
.

Files

Files Size Format View
MathSlov_51-2001-4_9.pdf 492.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo