Previous |  Up |  Next

Article

Title: An individual ergodic theorem on the Hilbert space logic (English)
Author: Lutterová, Tatiana
Author: Pulmannová, Sylvia
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 35
Issue: 4
Year: 1985
Pages: 361-371
.
Category: math
.
MSC: 46L51
MSC: 46L53
MSC: 46L54
MSC: 47A35
idZBL: Zbl 0597.46066
idMR: MR820633
.
Date available: 2009-09-25T09:49:26Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/131615
.
Reference: [1] DVUREČENSKIJ A., RIEČAN B.: On the individual ergodic theorem on a logic.CMUC 21, 2, 1980, 385-391. Zbl 0443.28014, MR 0580693
Reference: [2] PULMANNOVÁ S.: Individual ergodic theorem on a logic.Math. Slovaca 32, 1982, 413-416. Zbl 0503.28005, MR 0676579
Reference: [3] DVUREČENSKIJ A., PULMANNOVÁ S.: Connection between joint distributions and compatibility.Rep. Math. Phys. 19, 1984, 349-359. MR 0745430
Reference: [4] GUDDER S. P.: Joint distributions of observables.J. Math. Mech. 18, 1968, 325-335. Zbl 0241.60092, MR 0232582
Reference: [5] PULMANNOVÁ S.: Relative compatibility and joint distributions of obseгvables.Found. Phys. 10, 1980, 641-653. MR 0659345
Reference: [6] PULMANNOVÁ S.: Compatibility and paгtial compatibility in quantum logics.Ann. Inst. H. Poincaгé XXXIV 1981, 391-403. MR 0625170
Reference: [7] HALMOS P. R.: Intгoduction to the Theory of Hilbert Space and Spectгal Multiplicity.Chelsea Publishing Co, New York 1957.
Reference: [8] GLEASON A.: Measures on closed subspaces of a Hilbert space.J. Math. Mech. 6, 1957, 885-894. MR 0096113
Reference: [9] GUDDER S. P., MULLIKIN H. C: Measuгe theoгetic conveгgences of obseгvables and opeгatoгs.J. Math. Phys. 14, 1973, 234-242. MR 0334747
Reference: [10] VARADARAJAN V. S.: Geometry of Quantum Theory I.van Nostrand, Princeton N. Y. 1968. MR 0471674
Reference: [11] LANCE C.: Eгgodic theoгems foг convex sets and opeгator algebгas.Invent. Math. 37, 1976, 201-204.
Reference: [12] YEADON F. J.: Ergodic theoгems for semifinite von Neumann algebras I.J. London Math. Soc. 16, 1977, 326-332. MR 0487482
Reference: [13] YEADON F. J.: Eгgodic theoгems for semifinite von Neumann algebгas II.Math. Pгoc. Cambг. Phil. Soc. 88, 1980, 135-147.
Reference: [14] JAJTE R.: Non-commutative subadditive eгgodic theorem for semifinite von Neumann algebras.to appear.
Reference: [15] GUDDER S. P.: Uniqueness and existence pгopeгties of bounded obseгvables.Pac. J. Math. 15, 1966, 81-93. MR 0201146
Reference: [16] DVUREČENSKIJ A., PULMANNOVÁ S.: On the sum of obseгvables on a logic.Math. Slovaca З0, 1980, 393-399.
Reference: [17] ZIERLER N.: Axioms for nonrelativistic quantum mechanics.Pac. J. Math. 11, 1961, 1161-1169. MR 0140972
.

Files

Files Size Format View
MathSlov_35-1985-4_7.pdf 735.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo