| Title: | Class preserving mappings of equivalence systems (English) | 
| Author: | Chajda, Ivan | 
| Language: | English | 
| Journal: | Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica | 
| ISSN: | 0231-9721 | 
| Volume: | 43 | 
| Issue: | 1 | 
| Year: | 2004 | 
| Pages: | 61-64 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | By an equivalence system is meant a couple $\mathcal{A} = (A,\theta )$ where $A$ is a non-void set and $\theta $ is an equivalence on $A$. A mapping $h$ of an equivalence system $\mathcal{A}$ into $\mathcal{B}$ is called a class preserving mapping if $h([a]_{\theta }) = [h(a)]_{\theta {^{\prime }}}$ for each $a \in A$. We will characterize class preserving mappings by means of permutability of $\theta $ with the equivalence $\Phi _{h}$ induced by $h$. (English) | 
| Keyword: | equivalence relation | 
| Keyword: | equivalence system | 
| Keyword: | relational system | 
| Keyword: | homomorphism | 
| Keyword: | strong homomorphism | 
| Keyword: | permuting equivalences | 
| MSC: | 03E02 | 
| MSC: | 08A02 | 
| MSC: | 08A35 | 
| idZBL: | Zbl 1077.08001 | 
| idMR: | MR2124603 | 
| . | 
| Date available: | 2009-08-21T12:54:09Z | 
| Last updated: | 2012-05-04 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/132935 | 
| . | 
| Reference: | [1] Madarász R., Crvenković S.: Relacione algebre. : Matematički Institut, Beograd., 1992.  MR 1215483 | 
| Reference: | [2] Maltsev A. I.: Algebraic systems. : Nauka, Moskva., 1970, (in Russian).  MR 0282908 | 
| Reference: | [3] Riguet J.: Relations binaires, fermetures, correspondances de Galois.Bull. Soc. Math. France 76 (1948), 114–155.  Zbl 0033.00603, MR 0028814 | 
| . |