Previous |  Up |  Next

Article

Title: Remarks on ideals in lower-bounded dually residuated lattice-ordered monoids (English)
Author: Kühr, Jan
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 43
Issue: 1
Year: 2004
Pages: 105-112
Summary lang: English
.
Category: math
.
Summary: Lattice-ordered groups, as well as $GMV$-algebras (pseudo $MV$-algebras), are both particular cases of dually residuated lattice-ordered monoids ($DR\ell $-monoids for short). In the paper we study ideals of lower-bounded $DR\ell $-monoids including $GMV$-algebras. Especially, we deal with the connections between ideals of a $DR\ell $-monoid $A$ and ideals of the lattice reduct of $A$. (English)
Keyword: $DR\ell $-monoid
Keyword: ideal
Keyword: prime ideal
MSC: 03G25
MSC: 06F05
idZBL: Zbl 1071.06007
idMR: MR2124607
.
Date available: 2009-08-21T12:54:35Z
Last updated: 2012-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/132947
.
Reference: [1] Cignoli R. L. O., Mundici D., D’Ottaviano I. M. L.: Algebraic Foundations of Many-valued Reasoning. : Kluwer Acad. Publ., Dordrecht-Boston-London., 2000. MR 1786097
Reference: [2] Georgescu G., Iorgulescu A.: Pseudo $MV$-algebras.Mult. Valued Log. 6 (2001), 95–135. Zbl 1014.06008, MR 1817439
Reference: [3] Kovář T.: A General Theory of Dually Residuated Lattice Ordered Monoids.Ph.D. Thesis, Palacký University, Olomouc, 1996.
Reference: [4] Kühr J.: Ideals of noncommutative $DR\ell $-monoids.Czech. Math. J. (to appear). MR 2121658
Reference: [5] Kühr J.: Prime ideals and polars in $DR\ell $-monoids and pseudo $BL$-algebras.Math. Slovaca 53 (2003), 233–246. MR 2025020
Reference: [6] Kühr J.: A generalization of $GMV$-algebras.(submitted).
Reference: [7] Rachůnek J.: $DR\ell $-semigroups and $MV$-algebras.Czech. Math. J. 48 (1998), 365–372. MR 1624268
Reference: [8] Rachůnek J.: $MV$-algebras are categorically equivalent to a class of $DR\ell _{1(i)}$-semigroups.Math. Bohem. 123 (1998), 437–441. MR 1667115
Reference: [9] Rachůnek J.: Connections between ideals of non-commutative generalizations of $MV$-algebras and ideals of their underlying lattices.Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 40 (2001), 195–200. Zbl 1040.06005, MR 1904695
Reference: [10] Rachůnek J.: A non-commutative generalization of $MV$-algebras.Czech. Math. J. 52 (2002), 255–273. Zbl 1012.06012
Reference: [11] Swamy K. L. N.: Dually residuated lattice ordered semigroups.Math. Ann. 159 (1965), 105–114. Zbl 0138.02104, MR 0183797
.

Files

Files Size Format View
ActaOlom_43-2004-1_10.pdf 314.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo