Title:
|
On $r$-reflexive Banach spaces (English) |
Author:
|
Banakh, Iryna |
Author:
|
Banakh, Taras |
Author:
|
Riss, Elena |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
50 |
Issue:
|
1 |
Year:
|
2009 |
Pages:
|
61-74 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A Banach space $X$ is called {\it $r$-reflexive\/} if for any cover $\Cal U$ of $X$ by weakly open sets there is a finite subfamily $\Cal V\subset\Cal U$ covering some ball of radius 1 centered at a point $x$ with $\|x\|\leq r$. We prove that an infinite-dimensional separable Banach space $X$ is $\infty$-reflexive ($r$-reflexive for some $r\in \Bbb N$) if and only if each $\varepsilon $-net for $X$ has an accumulation point (resp., contains a non-trivial convergent sequence) in the weak topology of $X$. We show that the quasireflexive James space $J$ is $r$-reflexive for no $r\in \Bbb N$. We do not know if each $\infty$-reflexive Banach space is reflexive, but we prove that each separable $\infty$-reflexive Banach space $X$ has Asplund dual. As a by-product of the proof we obtain a covering characterization of the Asplund property of Banach spaces. (English) |
Keyword:
|
reflexive Banach space |
Keyword:
|
$r$-reflexive Banach space |
Keyword:
|
Asplund Banach space |
MSC:
|
46A25 |
MSC:
|
46B10 |
MSC:
|
46B22 |
idZBL:
|
Zbl 1212.46022 |
idMR:
|
MR2562803 |
. |
Date available:
|
2009-08-18T12:22:58Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/133414 |
. |
Reference:
|
[Ba] Banakh I.: On Banach spaces possessing an $\varepsilon $-net without weak limit points.Math. Methods and Phys. Mech. Fields 43 3 (2000), 40--43. MR 1968634 |
Reference:
|
[BPZ] Banakh T., Plichko A., Zagorodnyuk A.: Zeros of continuous quadratic functionals on non-separable Banach spaces.Colloq. Math. 100 (2004), 141--147. MR 2079354, 10.4064/cm100-1-13 |
Reference:
|
[BFT] Bourgain J., Fremlin D., Talagrand M.: Pointwise compact sets of Baire-measurable functions.Amer. J. Math. 100 4 (1978), 845--886. Zbl 0413.54016, MR 0509077, 10.2307/2373913 |
Reference:
|
[CG] Castillo J., González M.: Three-space problems in Banach space theory.Lecture Notes in Mathematics, 1667, Springer, Berlin, 1997. MR 1482801 |
Reference:
|
[Dis] Diestel J.: Sequences and Series in Banach Spaces.Springer, New York, 1984. MR 0737004 |
Reference:
|
[En] Engelking R.: General Topology.PWN, Warsaw, 1977. Zbl 0684.54001, MR 0500780 |
Reference:
|
[Fab] Fabian M.: Gateaux Differentiability of Convex Functions and Topology.John Wiley & Sons, Inc., New York, 1997. Zbl 0883.46011, MR 1461271 |
Reference:
|
[HHZ] Habala P., Hájek P., Zizler V.: Introduction to Banach spaces.Matfyzpress, Praha, 1996. |
Reference:
|
[OR] Odell E., Rosenthal H.P.: A double-dual characterization of separable Banach spaces containing $l^{1}$.Israel J. Math. 20 3--4 (1975), 375--384. MR 0377482, 10.1007/BF02760341 |
. |