Previous |  Up |  Next

Article

Title: Linear inessential operators and generalized inverses (English)
Author: Barnes, Bruce A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 1
Year: 2009
Pages: 75-82
Summary lang: English
.
Category: math
.
Summary: The space of inessential bounded linear operators from one Banach space $X$ into another $Y$ is introduced. This space, $I(X,Y)$, is a subspace of $B(X,Y)$ which generalizes Kleinecke's ideal of inessential operators. For certain subspaces $W$ of $\,I(X,Y)$, it is shown that when $T\in B(X,Y)$ has a generalized inverse modulo $W$, then there exists a projection $P\in B(X)$ such that $T(I-P)$ has a generalized inverse and $TP\in W$. (English)
Keyword: inessential operator
Keyword: Fredholm operator
Keyword: generalized inverse
MSC: 47A05
MSC: 47A55
idZBL: Zbl 1212.47001
idMR: MR2562804
.
Date available: 2009-08-18T12:23:05Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/133415
.
Reference: [AA] Abramovich Y., Aliprantis C.: An Invitation to Operator Theory.Graduate Studies in Math. 50, American Mathematical Society, Providence, 2002. Zbl 1022.47001, MR 1921782
Reference: [B] Barnes B.: Generalized inverses of operators in some subalgebras of $B(X)$.Acta Sci. Math. (Szeged) 69 (2003), 349--357. Zbl 1063.47029, MR 1991672
Reference: [BMSW] Barnes B., Murphy G., Smyth R., and West T.T.: Riesz and Fredholm Theory in Banach Algebras.Research Notes in Mathematics 67, Pitman, Boston, 1982. MR 0668516
Reference: [C] Caradus S.: Generalized Inverses and Operator Theory.Queen's Papers in Pure and Applied Math. 50, Queen's University, Kingston, Ont., 1978. Zbl 0434.47003, MR 0523736
Reference: [CPY] Caradus S., Pfaffenberger W., Yood B.: Calkin Algebras and Algebras of Operators on Banach Spaces.Lecture Notes in Pure and Applied Math., Vol. 9, Marcel Dekker, New York, 1974. Zbl 0299.46062, MR 0415345
Reference: [J] Jörgens K.: Linear Integral Operators.Pitman, Boston, 1982. MR 0647629
Reference: [K] Kleinecke D.: Almost finite, compact, and inessential operators.Proc. Amer. Math. Soc. 14 (1963), 863--868. Zbl 0117.34201, MR 0155197, 10.1090/S0002-9939-1963-0155197-5
Reference: [LT] Lay D., Taylor A.: Introduction to Functional Analysis.John Wiley and Sons, New York, 1980. Zbl 0654.46002, MR 0564653
Reference: [P] Palmer T.: Banach Algebras and the General Theory of *-Algebras, Vol. 1.Encyclopedia of Mathematics and its Applications 49, Cambridge University Press, Cambridge, 1994. MR 1270014
Reference: [R] Rakočević V.: A note on regular elements in Calkin algebras.Collect. Math. 43 (1992), 37--42. MR 1214221
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-1_6.pdf 197.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo