Previous |  Up |  Next

Article

Title: Topologies on groups determined by right cancellable ultrafilters (English)
Author: Protasov, I. V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 1
Year: 2009
Pages: 135-139
Summary lang: English
.
Category: math
.
Summary: For every discrete group $G$, the Stone-Čech compactification $\beta G$ of $G$ has a natural structure of a compact right topological semigroup. An ultrafilter $p\in G^*$, where $G^*=\beta G\setminus G$, is called right cancellable if, given any $q,r\in G^*$, $qp=rp$ implies $q=r$. For every right cancellable ultrafilter $p\in G^*$, we denote by $G(p)$ the group $G$ endowed with the strongest left invariant topology in which $p$ converges to the identity of $G$. For any countable group $G$ and any right cancellable ultrafilters $p,q\in G^*$, we show that $G(p)$ is homeomorphic to $G(q)$ if and only if $p$ and $q$ are of the same type. (English)
Keyword: Stone-Čech compactification
Keyword: right cancellable ultrafilters
Keyword: left invariant topologies
MSC: 54C05
MSC: 54G15
MSC: 54H11
idZBL: Zbl 1212.54101
idMR: MR2562810
.
Date available: 2009-08-18T12:23:47Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/133421
.
Reference: [1] Hindman N., Strauss D.: Algebra in the Stone-Čech Compactification: Theory and Applications.Walter de Gruyter, Berlin, 1998. Zbl 0918.22001, MR 1642231
Reference: [2] Hindman N., Protasov I., Strauss D.: Topologies on $S$ determined by idempotents in $\beta S$.Topology Proc. 23 (1998), 155--190. Zbl 0970.54036, MR 1803247
Reference: [3] Protasov I.V.: Maximal topologies on groups.Siberian Math. J. 39 (1998), 1184--1194. Zbl 0935.22002, MR 1672661, 10.1007/BF02674129
Reference: [4] Protasov I.V.: Extremal topologies on groups.Mat. Stud. 15 (2001), 9--22. Zbl 0989.22003, MR 1871923
Reference: [5] Protasov I.V.: Remarks on extremally disconnected semitopological groups.Comment. Math. Univ. Carolin. 43 (2002), 343--347. Zbl 1090.54033, MR 1922132
Reference: [6] Vaughan J.E.: Two spaces homeomorphic to $Seq(p)$.Comment. Math. Univ. Carolin. 42 (2001), 209--218. Zbl 1053.54033, MR 1825385
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-1_12.pdf 183.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo