Previous |  Up |  Next

Article

Title: Radical decompositions of semiheaps (English)
Author: Hawthorn, Ian
Author: Stokes, Tim
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 2
Year: 2009
Pages: 191-208
Summary lang: English
.
Category: math
.
Summary: Semiheaps are ternary generalisations of involuted semigroups. The first kind of semiheaps studied were heaps, which correspond closely to groups. We apply the radical theory of varieties of idempotent algebras to varieties of idempotent semiheaps. The class of heaps is shown to be a radical class, as are two larger classes having no involuted semigroup counterparts. Radical decompositions of various classes of idempotent semiheaps are given. The results are applied to involuted I-semigroups, leading to a radical-theoretic interpretation of the largest idempotent-separating congruence. (English)
Keyword: radical theory of idempotent algebras
Keyword: ternary operation
Keyword: involuted semigroups
Keyword: semiheaps
Keyword: generalised heaps
Keyword: heaps
MSC: 20M11
MSC: 20N10
idZBL: Zbl 1204.20087
idMR: MR2537831
.
Date available: 2009-08-18T12:24:34Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/133428
.
Reference: [1] Baer R.: Zür Einfuhrung des Scharbegriffs.J. Reine Angew. Math. 160 (1929), 199--207.
Reference: [2] Divinsky N.: Rings and Radicals.Allen and Unwin, 1965. Zbl 0138.26303, MR 0197489
Reference: [3] Gardner B.J.: Radical decompositions of idempotent algebras.J. Austral Math. Soc. (Series A) 36 (1984), 213--236. Zbl 0541.08001, MR 0725747, 10.1017/S1446788700024666
Reference: [4] Hoehnke H.-J.: Radikale in allgemeinen Algebren.Math. Nachr. 32 (1966), 347--383. Zbl 0149.02003, MR 0227077, 10.1002/mana.19660320607
Reference: [5] Hoehnke H.-J.: Einige neue Resultate über abstrakte Halbgruppen.Colloq. Math. 14 (1966), 329--349. Zbl 0196.29501, MR 0185027
Reference: [6] Howie J.M.: The maximum idempotent separating congruence on an inverse semigroup.Proc. Edinburgh Math. Soc. 14 (1964/65), 71--79. MR 0163976
Reference: [7] Howie J.M.: Fundamentals of Semigroup Theory.Oxford University Press, Oxford, 1995. Zbl 0835.20077, MR 1455373
Reference: [8] Márki L., Mlitz R., Wiegandt R.: A General Kurosh-Amitsur radical theory.Comm. Algebra 16 (1988), 249--305. MR 0929120, 10.1080/00927878808823572
Reference: [9] Munn W.D.: Fundamental Inverse Semigroups.Quart. J. Math. Oxford Ser. (2) 17 (1966), 157--170. Zbl 0219.20047, MR 0262402
Reference: [10] Prüfer H.: Theorie der Abelschen Gruppen.Math. Z. 20 (1924), 165--187. MR 1544670, 10.1007/BF01188079
Reference: [11] Stokes T.: Radical classes of algebras with B-action.Algebra Universalis 40 (1998), 73--85. Zbl 0935.08004, MR 1643221, 10.1007/s000120050082
Reference: [12] Vagner V.V.: The theory of generalized heaps and generalized groups.(Russian), Mat. Sbornik N.S. 32 (1953), 545--632. MR 0059267
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-2_3.pdf 285.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo