Previous |  Up |  Next

Article

Title: The fixed points and iterated order of some differential polynomials (English)
Author: Belaidi, Benharrat
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 2
Year: 2009
Pages: 209-219
Summary lang: English
.
Category: math
.
Summary: This paper is devoted to considering the iterated order and the fixed points of some differential polynomials generated by solutions of the differential equation $$ f^{^{\prime \prime }}+A_{1}(z) f^{^{\prime }} + A_{0}(z) f=F, $$ where $A_{1}(z)$, $A_{0}(z)$ $(\not\equiv 0)$, $F$ are meromorphic functions of finite iterated $p$-order. (English)
Keyword: linear differential equations
Keyword: differential polynomials
Keyword: meromorphic solutions
Keyword: iterated order
Keyword: iterated exponent of convergence of the sequence of distinct zeros
MSC: 30D35
MSC: 34M10
idZBL: Zbl 1212.34278
idMR: MR2537832
.
Date available: 2009-08-18T12:24:40Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/133429
.
Reference: [1] Belaidi B.: Oscillation of fixed points of solutions of some linear differential equations.Acta. Math. Univ. Comenianae 77 (2008), 2 263--269. Zbl 1174.34528, MR 2489196
Reference: [2] Bernal L.G.: On growth $k$-order of solutions of a complex homogeneous linear differential equations.Proc. Amer. Math. Soc. 101 (1987), 317--322. MR 0902549
Reference: [3] Cao T.B., Yi H.X.: On the complex oscillation of higher order linear differential equations with meromorphic functions.J. Syst. Sci. Complex. 20 (2007), 1 135--148. MR 2329065, 10.1007/s11424-007-9012-7
Reference: [4] Chen Z.X.: The fixed points and hyper order of solutions of second order complex differential equations.Acta Math. Sci. Ser. A Chin. Ed. 20 (2000), 3 425-432 (in Chinese). Zbl 0980.30022, MR 1792926
Reference: [5] Hayman W.K.: Meromorphic Functions.Clarendon Press, Oxford, 1964. Zbl 0667.30029, MR 0164038
Reference: [6] Kinnunen L.: Linear differential equations with solutions of finite iterated order.Southeast Asian Bull. Math. 22 (1998), 4 385--405. Zbl 0934.34076, MR 1811183
Reference: [7] Laine I.: Nevanlinna Theory and Complex Differential Equations.Walter de Gruyter, Berlin, New York, 1993. Zbl 0784.30002, MR 1207139
Reference: [8] Laine I., Rieppo J.: Differential polynomials generated by linear differential equations.Complex Var. Theory Appl. 49 (2004), 12 897--911. Zbl 1080.34076, MR 2101213, 10.1080/02781070410001701092
Reference: [9] Liu M.S., Zhang X.M.: Fixed points of meromorphic solutions of higher order linear differential equations.Ann. Acad. Sci. Fenn. Math. 31 (2006), 191--211. Zbl 1094.30036, MR 2210116
Reference: [10] Nevanlinna R.: Eindeutige Analytische Funktionen.Zweite Auflage, reprint, Die Grundlehren der mathematischen Wissenschaften, 46, Springer, Berlin-New York, 1974. Zbl 0278.30002, MR 0344426
Reference: [11] Wang J., Yi H.X.: Fixed points and hyper order of differential polynomials generated by solutions of differential equation.Complex Var. Theory Appl. 48 (2003), 1 83--94. Zbl 1071.30029, MR 1953763, 10.1080/0278107021000037048
Reference: [12] Zhang Q.T., Yang C.C.: The Fixed Points and Resolution Theory of Meromorphic Functions.Beijing University Press, Beijing, 1988 (in Chinese).
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-2_4.pdf 214.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo