Title:
|
More on cardinal invariants of analytic $P$-ideals (English) |
Author:
|
Farkas, Barnabás |
Author:
|
Soukup, Lajos |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
50 |
Issue:
|
2 |
Year:
|
2009 |
Pages:
|
281-295 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Given an ideal $\mathcal I$ on $\omega $ let $\mathfrak{a} (\mathcal I)$ ($\bar{\mathfrak{a}}(\mathcal I)$) be minimum of the cardinalities of infinite (uncountable) maximal $\mathcal I$-almost disjoint subsets of $[{\omega}]^{\omega}$. We show that $\mathfrak{a} (\mathcal I_h)>{\omega}$ if $\mathcal I_h$ is a summable ideal; but $\mathfrak{a} ({\mathcal Z_{\vec \mu }})= {\omega}$ for any tall density ideal $\mathcal Z_{\vec \mu }$ including the density zero ideal $\mathcal Z$. On the other hand, you have $\mathfrak{b}\le \bar{\mathfrak{a}}(\mathcal I)$ for any analytic $P$-ideal $\mathcal I$, and $\bar{\mathfrak{a}}(\mathcal Z_{\vec \mu })\le \mathfrak{a}$ for each density ideal $\mathcal Z_{\vec \mu }$. For each ideal $\mathcal I$ on $\omega $ denote $\mathfrak{b}_{\mathcal I}$ and $\mathfrak{d}_{\mathcal I}$ the unbounding and dominating numbers of $\langle \omega ^\omega , \le_{\mathcal I}\rangle $ where $f\le_{\mathcal I} g$ iff $\{n\in \omega :f(n)> g(n)\}\in \mathcal I$. We show that $\mathfrak{b}_{\mathcal I}= \mathfrak{b}$ and $\mathfrak{d}_{\mathcal I}= \mathfrak{d}$ for each analytic $P$-ideal $\mathcal I$. Given a Borel ideal $\mathcal I$ on $\omega $ we say that a poset $\mathbb P$ is {\em $\mathcal I$-bounding\/} iff $\forall\, x\in \mathcal I\cap V^{\mathbb P}$ $\exists\, y\in \mathcal I\cap V$ $x\subseteq y$. $\mathbb P$ is {\em $\mathcal I$-dominating\/} iff $\exists\, y\in \mathcal I\cap V^{\mathbb P}$ $\forall\, x\in \mathcal I\cap V$ $x\subseteq^* y$. For each analytic $P$-ideal $\mathcal I$ if a poset $\mathbb P$ has the Sacks property then $\mathbb P$ is $\mathcal I$-bounding; moreover if $\mathcal I$ is tall as well then the property $\mathcal I$-bounding/$\mathcal I$-dominating implies ${\omega}^{\omega}$-bounding/adding dominating reals, and the converses of these two implications are false. For the density zero ideal $\mathcal Z$ we can prove more: (i) a poset $\mathbb P$ is $\mathcal Z$-bounding iff it has the Sacks property, (ii) if $\mathbb P$ adds a slalom capturing all ground model reals then $\mathbb P$ is $\mathcal Z$-dominating. (English) |
Keyword:
|
analytic $P$-ideals |
Keyword:
|
cardinal invariants |
Keyword:
|
forcing |
MSC:
|
03E17 |
MSC:
|
03E35 |
idZBL:
|
Zbl 1212.03035 |
idMR:
|
MR2537837 |
. |
Date available:
|
2009-08-18T12:25:16Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/133434 |
. |
Reference:
|
[Fa] Farah I.: Analytic quotients: theory of liftings for quotients over analytic ideals on the integers.Mem. Amer. Math. Soc. 148 (2000), no. 702, 177 pp. Zbl 0966.03045, MR 1711328 |
Reference:
|
[Fr] Fremlin D.H.: Measure Theory. Set-theoretic Measure Theory.Torres Fremlin, Colchester, England, 2004; available at {\tt http://www.essex.ac.uk/maths/staff/fremlin/mt.html}. |
Reference:
|
[Ku] Kunen K.: Set Theory, An Introduction to Independence Proofs.North Holland, Amsterdam, New York, Oxford, 1980. Zbl 0534.03026, MR 0597342 |
Reference:
|
[LaZh] Laflamme C., Zhu J.-P.: The Rudin-Blass ordering of ultrafilters.J. Symbolic Logic 63 (1998), no. 2, 584--592. Zbl 0911.04001, MR 1627310, 10.2307/2586852 |
Reference:
|
[LoVe] Louveau A., Veličković B.: Analytic ideals and cofinal types.Ann. Pure Appl. Logic 99 (1999), 171--195. MR 1708151, 10.1016/S0168-0072(98)00065-7 |
Reference:
|
[Ru] Rudin M.E.: Partial orders on the types of $\beta \omega $.Trans. Amer. Math. Soc. 155 (1971), 353--362. MR 0273581 |
Reference:
|
[So] Solecki S.: Analytic $P$-ideals and their applications.Ann. Pure Appl. Logic 99 (1999), 51--72. MR 1708146, 10.1016/S0168-0072(98)00051-7 |
Reference:
|
[Vo] Vojtáš P.: Generalized Galois-Tukey-connections between explicit relations on classical objects of real analysis.Set Theory of the Reals (Ramat Gan, 1991), Israel Math. Conf. Proc., 6, Bar-Ilan Univ., Ramat Gan, 1993, pp. 619--643. MR 1234291 |
. |