Previous |  Up |  Next

Article

Title: The Baire property in remainders of topological groups and other results (English)
Author: Arhangel'skii, Alexander
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 2
Year: 2009
Pages: 273-279
Summary lang: English
.
Category: math
.
Summary: It is established that a remainder of a non-locally compact topological group $G$ has the Baire property if and only if the space $G$ is not Čech-complete. We also show that if $G$ is a non-locally compact topological group of countable tightness, then either $G$ is submetrizable, or $G$ is the Čech-Stone remainder of an arbitrary remainder $Y$ of $G$. It follows that if $G$ and $H$ are non-submetrizable topological groups of countable tightness such that some remainders of $G$ and $H$ are homeomorphic, then the spaces $G$ and $H$ are homeomorphic. Some other corollaries and related results are presented. (English)
Keyword: Baire property
Keyword: $\sigma $-compact
Keyword: Čech-complete space
Keyword: compactification
Keyword: Čech-Stone compactification
Keyword: Rajkov complete
Keyword: paracompact $p$-space
MSC: 54B05
MSC: 54H11
MSC: 54H15
idZBL: Zbl 1212.54098
idMR: MR2537836
.
Date available: 2009-08-18T12:25:08Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/133433
.
Reference: [1] Arhangel'skii A.V.: On a class of spaces containing all metric and all locally compact spaces.Mat. Sb. 67 (109) (1965), 55--88; English translation: Amer. Math. Soc. Transl. 92 (1970), 1--39. MR 0190889
Reference: [2] Arhangel'skii A.V.: Classes of topological groups.Russian Math. Surveys 36 (3) (1981), 151-174. MR 0622722, 10.1070/RM1981v036n03ABEH004249
Reference: [3] Arhangel'skii A.V.: Moscow spaces and topological groups.Topology Proc. 25 (2000), 383--416. Zbl 1027.54038, MR 1925695
Reference: [4] Arhangel'skii A.V.: Remainders in compactifications and generalized metrizability properties.Topology Appl. 150 (2005), 79--90. Zbl 1075.54012, MR 2133669, 10.1016/j.topol.2004.10.015
Reference: [5] Arhangel'skii A.V.: Two types of remainders of topological groups.Comment. Math. Univ. Carolin. 49 (2008), no. 1, 119--126. MR 2433629
Reference: [6] Arhangel'skii A.V., Ponomarev V.I.: Fundamentals of General Topology in Problems and Exercises.Reidel, 1984 (translated from Russian). MR 0785749
Reference: [7] Arhangel'skii A.V., Tkachenko M.G.: Topological Groups and Related Structures.Atlantis Press, Paris; World Scientific, Hackensack, NJ, 2008. MR 2433295
Reference: [8] Choban M.M.: On completions of topological groups.Vestnik Moskov. Univ. Ser. Mat. Mech. 1 (1970), 33--38 (in Russian). MR 0279226
Reference: [9] Choban M.M.: Topological structure of subsets of topological groups and their quotients.in Topological Structures and Algebraic Systems, Shtiintsa, Kishinev, 1977, pp. 117--163 (in Russian).
Reference: [10] Engelking R.: General Topology.PWN, Warszawa, 1977. Zbl 0684.54001, MR 0500780
Reference: [11] Rančin D.V.: Tightness, sequentiality, and closed covers.Dokl. Akad. Nauk SSSR 232 (1977), 1015--1018. MR 0436074
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-2_8.pdf 202.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo