Previous |  Up |  Next

Article

Keywords:
$\mathit{DR}\ell $-monoid; $\mathit{GPMV}$-algebra; Archimedean property
Summary:
In this note we describe the structure of dually residuated $\ell $-monoids ($\mathit{DR}\ell $-monoids) that have no non-trivial convex subalgebras.
References:
[1] Anderson M., Feil T.: Lattice-Ordered Groups (An Introduction). : D. Reidel, Dordrecht. 1988. MR 0937703
[2] Galatos N., Tsinakis C.: Generalized MV-algebras. J. Algebra 283 (2005), 254–291. MR 2102083 | Zbl 1063.06008
[3] Georgescu G., Leuştean L., Preoteasa V.: Pseudo-hoops. J. Mult.-Val. Log. Soft Comput. 11 (2005), 153–184. MR 2162590 | Zbl 1078.06007
[4] Glass A. M. W.: Partially Ordered Groups. : World Scientific, Singapore. 1999. MR 1791008
[5] Jipsen P., Tsinakis C.: A survey of residuated lattices. In: Ordered Algebraic Structures (Martinez, J., ed.), Kluwer Acad. Publ., Dordrecht, 2002, pp. 19–56. MR 2083033 | Zbl 1070.06005
[6] Kovář T.: A General Theory of Dually Residuated Lattice Ordered Monoids. : Ph.D. thesis, Palacký University, Olomouc. 1996.
[7] Kühr J.: Ideals of noncommutative $DR\ell $-monoids. Czechoslovak Math. J. 55 (2005), 97–111. MR 2121658
[8] Kühr J.: On a generalization of pseudo MV-algebras. J. Mult.-Val. Log. Soft Comput. (to appear). MR 2288689
[9] Kühr J.: Generalizations of pseudo MV-algebras and generalized pseudo effect algebras. Submitted. Zbl 1174.06330
[10] Swamy K. L. N.: Dually residuated lattice ordered semigroups. Math. Ann. 159 (1965), 105–114. MR 0183797 | Zbl 0138.02104
Partner of
EuDML logo