Previous |  Up |  Next

Article

Title: Additive closure operators on abelian unital $l$-groups (English)
Author: Švrček, Filip
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 45
Issue: 1
Year: 2006
Pages: 153-158
Summary lang: English
.
Category: math
.
Summary: In the paper an additive closure operator on an abelian unital $l$-group $(G,u)$ is introduced and one studies the mutual relation of such operators and of additive closure ones on the $MV$-algebra $\Gamma (G,u)$. (English)
Keyword: $MV$-algebra
Keyword: $l$-group.
MSC: 06D35
MSC: 06F20
idZBL: Zbl 1125.06014
idMR: MR2321307
.
Date available: 2009-08-21T07:04:41Z
Last updated: 2012-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/133443
.
Reference: [1] Chang C. C.: Algebraic analysis of many valued logics.Trans. Amer. Math. Soc. 88 (1958), 467–490. Zbl 0084.00704, MR 0094302
Reference: [2] Chang C. C.: A new proof of the completeness of the Lukasiewicz axioms.Trans. Amer. Math. Soc. 93 (1959), 74–80. Zbl 0093.01104, MR 0122718
Reference: [3] Cignoli R. O. L., D’Ottaviano I. M. L., Mundici D.: Algebraic Foundations of Many-valued Reasoning. : Kluwer Acad. Publ., Dordrecht–Boston–London.2000. MR 1786097
Reference: [4] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures. : Kluwer Acad. Publ., Dordrecht.2000. MR 1861369
Reference: [5] Mundici D.: Interpretation of AF $C^{*}\! $-algebras in Lukasiewicz sentential calculus.J. Funct. Analys. 65 (1986), 15–63. Zbl 0597.46059, MR 0819173
Reference: [6] Rachůnek J., Švrček F.: MV-algebras with additive closure operators.Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 39 (2000), 183–189. Zbl 1039.06005, MR 1826361
.

Files

Files Size Format View
ActaOlom_45-2006-1_15.pdf 309.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo