Title:
|
On reflexivity and hyperreflexivity of some spaces of intertwining operators (English) |
Author:
|
Zajac, Michal |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
133 |
Issue:
|
1 |
Year:
|
2008 |
Pages:
|
75-83 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $T,T^{\prime }$ be weak contractions (in the sense of Sz.-Nagy and Foiaş), $m,m^{\prime }$ the minimal functions of their $C_0$ parts and let $d$ be the greatest common inner divisor of $m,m^{\prime }$. It is proved that the space $I(T,T^{\prime })$ of all operators intertwining $T,T^{\prime }$ is reflexive if and only if the model operator $S(d)$ is reflexive. Here $S(d)$ means the compression of the unilateral shift onto the space $H^2\ominus dH^2$. In particular, in finite-dimensional spaces the space $I(T,T^{\prime })$ is reflexive if and only if all roots of the greatest common divisor of minimal polynomials of $T,T^{\prime }$ are simple. The paper is concluded by an example showing that quasisimilarity does not preserve hyperreflexivity of $I(T,T^{\prime })$. (English) |
Keyword:
|
intertwining operator |
Keyword:
|
reflexivity |
Keyword:
|
$C_0$ contraction |
Keyword:
|
weak contraction |
Keyword:
|
hyperreflexivity |
MSC:
|
47A10 |
MSC:
|
47A15 |
MSC:
|
47A45 |
idZBL:
|
Zbl 1199.47024 |
idMR:
|
MR2400152 |
DOI:
|
10.21136/MB.2008.133939 |
. |
Date available:
|
2009-09-24T22:34:37Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/133939 |
. |
Reference:
|
[1] W. B. Arveson: Ten Lectures in Operator Algebras.C.B.M.S. Regional Conf. Ser. in Math, Amer. Math. Soc., Providence, 1984. |
Reference:
|
[2] H. Bercovici: Operator Theory and Arithmetic in $H^{\infty }$.Mathematical surveys and monographs 26, A.M.S. Providence, Rhode Island, 1988. MR 0954383 |
Reference:
|
[3] H. Bercovici, C. Foiaş, B. Sz.-Nagy: Reflexive and hyper-reflexive operators of class $C_0$.Acta Sci. Math. (Szeged) 43 (1981), 5–13. MR 0621348 |
Reference:
|
[4] J. B. Conway: A Course in Operator Theory.American Mathematical Society, Providence RI, 2000. Zbl 0936.47001, MR 1721402 |
Reference:
|
[5] Š. Drahovský, M. Zajac: Hyperreflexive operators on finite dimensional Hilbert spaces.Math. Bohem. 118 (1993), 249–254. MR 1239119 |
Reference:
|
[6] Š. Drahovský, M. Zajac: Hyperinvariant subspaces of operators on Hilbert spaces.Functional Analysis and Operator Theory, Banach Center Publications, vol 30, Institute of Mathematics, Warszawa, 1994, pp. 117–126. MR 1285602 |
Reference:
|
[7] V. V. Kapustin: Reflexivity of operators: general methods and a criterion for almost isometric contractions.Algebra i Analiz 4 (1992), 141–160. (Russian) Zbl 0791.47037, MR 1182398 |
Reference:
|
[8] K. Kliś, M. Ptak: $k$-hyperreflexive subspaces.Houston J. Math. l32 (2006), 299–313. MR 2202367 |
Reference:
|
[9] J. Kraus, D. Larson: Some applications of technique for constructing reflexive operator algebras.J. Operator Theory 13 (1985), 227–236. MR 0775995 |
Reference:
|
[10] J. Kraus, D. Larson: Reflexivity and distance formulae.Proc. London Math. Soc. 53 (1986), 340–356. MR 0850224 |
Reference:
|
[11] V. Müller, M. Ptak: Hyperreflexivity of finite-dimensional subspaces.J. Funct. Anal. 218 (2005), 395–408. MR 2108117, 10.1016/j.jfa.2004.03.015 |
Reference:
|
[12] D. Sarason: Invariant subspaces and unstarred operator algebras.Pacific J. Math. 17 (1966), 511–517. Zbl 0171.33703, MR 0192365, 10.2140/pjm.1966.17.511 |
Reference:
|
[13] V. S. Shul’man: The Fuglede-Putnam theorem and reflexivity.Dokl. Akad. Nauk SSSR 210 (1973), 543–544. (Russian) MR 0322559 |
Reference:
|
[14] B. Sz.-Nagy, C. Foiaş: Harmonic Analysis of Operators on Hilbert Space.North-Holland, Akadémiai kiadó, Budapest, 1970. MR 0275190 |
Reference:
|
[15] P. Y. Wu: Hyperinvariant subspaces of weak contractions.Acta Sci. Math. (Szeged) 41 (1979), 259–266. Zbl 0421.47003, MR 0534518 |
Reference:
|
[16] M. Zajac: Hyperinvariant subspaces of weak contractions.Operator Theory: Advances and Applications vol. 14, Birkhäuser, Basel, 1984, pp. 291–299. Zbl 0563.47001, MR 0789627 |
Reference:
|
[17] M. Zajac: Hyperinvariant subspaces of weak contractions. II.Operator Theory: Advances and Applications vol. 28, Birkhäuser, Basel, 1988, pp. 317–322. Zbl 0644.47005, MR 0942930 |
Reference:
|
[18] M. Zajac: On the singular unitary part of a contraction.Revue Roum. Math. Pures Appl. 35 (1990), 379–384. Zbl 0723.47007, MR 1082520 |
Reference:
|
[19] M. Zajac: Hyper-reflexivity of isometries and weak contractions.J. Operator Theory 25 (1991), 43–51. Zbl 0819.47058, MR 1214919 |
Reference:
|
[20] M. Zajac: Reflexivity of intertwining operators in finite dimensional spaces.Proc. 2nd Workshop Functional Analysis and its Applications, Sept. 16–18, 1999, Nemecká, Slovakia, 75–78. |
. |