Previous |  Up |  Next

Article

Title: A multidimensional integration by parts formula for the Henstock-Kurzweil integral (English)
Author: Lee, Tuo-Yeong
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 133
Issue: 1
Year: 2008
Pages: 63-74
Summary lang: English
.
Category: math
.
Summary: It is shown that if $g$ is of bounded variation in the sense of Hardy-Krause on ${\mathop {\prod }\limits _{i=1}^{m}} [a_i, b_i]$, then $g \chi _{ _{{\mathop {\prod }\limits _{i=1}^{m}} (a_i, b_i)}}$ is of bounded variation there. As a result, we obtain a simple proof of Kurzweil’s multidimensional integration by parts formula. (English)
Keyword: Henstock-Kurzweil integral
Keyword: bounded variation in the sense of Hardy-Krause
Keyword: integration by parts
MSC: 26A39
idZBL: Zbl 1199.26029
idMR: MR2400151
DOI: 10.21136/MB.2008.133945
.
Date available: 2009-09-24T22:34:29Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133945
.
Reference: [1] J. Kurzweil: On multiplication of Perron integrable functions.Czech. Math. J 23 (1973), 542–566. Zbl 0269.26007, MR 0335705
Reference: [2] Tuo-Yeong Lee, Tuan Seng Chew, Peng Yee Lee: Characterisation of multipliers for the double Henstock integrals.Bull. Austral. Math. Soc. 54 (1996), 441–449. MR 1419607, 10.1017/S0004972700021857
Reference: [3] Tuo-Yeong Lee: Multipliers for some non-absolute integrals in the Euclidean spaces.Real Anal. Exchange 24 (1998/99), 149–160. MR 1691742
Reference: [4] Tuo-Yeong Lee: A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space.Proc. London Math. Soc. 87 (2003), 677–700. MR 2005879
Reference: [5] Tuo-Yeong Lee: Every absolutely Henstock-Kurzweil integrable function is McShane integrable: an alternative proof.Rocky Mountain J. Math. 34 (2004), 1353–1365. MR 2095582, 10.1216/rmjm/1181069805
Reference: [6] Tuo-Yeong Lee: A full characterization of multipliers for the strong $\rho $-integral in the Euclidean space.Czech. Math. J. 54 (2004), 657–674. MR 2086723, 10.1007/s10587-004-6415-7
Reference: [7] Tuo-Yeong Lee: A characterisation of multipliers for the Henstock-Kurzweil integral.Math. Proc. Cambridge Philos. Soc. 138 (2005), 487–492. MR 2138575, 10.1017/S030500410500839X
Reference: [8] Tuo-Yeong Lee: Some full descriptive characterizations of the Henstock-Kurzweil integral in the Euclidean space.Czech. Math. J. 55 (2005), 625–637. MR 2153087, 10.1007/s10587-005-0050-9
Reference: [9] Tuo-Yeong Lee: The Henstock variational measure, Baire functions and a problem of Henstock.Rocky Mountain J. Math. 35 (2005), 1981–1997. MR 2210644
Reference: [10] Tuo-Yeong Lee: On the dual space of ${\text{BV}}$-integrable functions in Euclidean space.Real Anal. Exchange 30 (2004/2005), 323–328. MR 2127537, 10.14321/realanalexch.30.1.0323
Reference: [11] Tuo-Yeong Lee: Product variational measures and Fubini-Tonelli type theorems for the Henstock-Kurzweil integral II.J. Math. Anal. Appl. 323 (2006), 741–745. MR 2262241, 10.1016/j.jmaa.2005.10.045
Reference: [12] Tuo-Yeong Lee: Multipliers for generalized Riemann integrals in the real line.Math. Bohem. 131 (2006), 161–166. MR 2242842
Reference: [13] Tuo-Yeong Lee: A Fubini’s theorem for generalized Riemann integrals.Preprint.
Reference: [14] G. Q. Liu: The dual of the Henstock-Kurzweil space.Real Anal. Exchange 22 (1996/97), 105–121. MR 1433600
Reference: [15] S. Lojasiewicz: An Introduction to the Theory of Real Functions.John Wiley & Sons, Ltd., Chichester, 1988. Zbl 0653.26001, MR 0952856
Reference: [16] M. S. Macphail: Functions of bounded variation in two variables.Duke Math. J. 8 (1941), 215–222. Zbl 0025.15302, MR 0004285, 10.1215/S0012-7094-41-00815-3
Reference: [17] P. Mikusiński, K. Ostaszewski: The space of Henstock integrable functions II.New integrals, (P. S. Bullen, P. Y. Lee, J. L. Mawhin, P. Muldowney and W. F. Pfeffer, eds.), Lecture Notes in Math. 1419 (Springer, Berlin, Heideberg, New York, 1990), 136–149. MR 1051926
Reference: [18] K. M. Ostaszewski: The space of Henstock integrable functions of two variables.Internat. J. Math. and Math. Sci. 11 (1988), 15–22. Zbl 0662.26003, MR 0918213, 10.1155/S0161171288000043
Reference: [19] W. H. Young: On multiple integration by parts and the second theorem of the mean.Proc. London Math. Soc. 16 (1918), 273–293.
Reference: [20] W. H. Young, G. C. Young: On the discontinuities of monotone functions of several variables.Proc. London Math. Soc. 22 (1924), 124–142. MR 1575698
Reference: [21] S. K. Zaremba: Some applications of multidimensional integration by parts.Ann. Pol. Math. 21 (1968), 85–96. Zbl 0174.08402, MR 0235731, 10.4064/ap-21-1-85-96
.

Files

Files Size Format View
MathBohem_133-2008-1_6.pdf 291.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo