Previous |  Up |  Next

Article

Title: On sets of non-differentiability of Lipschitz and convex functions (English)
Author: Zajíček, Luděk
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 132
Issue: 1
Year: 2007
Pages: 75-85
Summary lang: English
.
Category: math
.
Summary: We observe that each set from the system $\widetilde{\mathcal A}$ (or even $\widetilde{\mathcal{C}}$) is $\Gamma $-null; consequently, the version of Rademacher’s theorem (on Gâteaux differentiability of Lipschitz functions on separable Banach spaces) proved by D. Preiss and the author is stronger than that proved by D. Preiss and J. Lindenstrauss. Further, we show that the set of non-differentiability points of a convex function on ${\mathbb{R}}^n$ is $\sigma $-strongly lower porous. A discussion concerning sets of Fréchet non-differentiability points of continuous convex functions on a separable Hilbert space is also presented. (English)
Keyword: Lipschitz function
Keyword: convex function
Keyword: Gâteaux differentiability
Keyword: Fréchet differentiability
Keyword: $\Gamma $-null sets
Keyword: ball small sets
Keyword: $\delta $-convex surfaces
Keyword: strong porosity
MSC: 26B05
MSC: 26E15
MSC: 46G05
MSC: 49J50
MSC: 49J52
idZBL: Zbl 1171.46314
idMR: MR2311755
DOI: 10.21136/MB.2007.133997
.
Date available: 2009-09-24T22:29:29Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133997
.
Reference: [1] N. Aronszajn: Differentiability of Lipschitzian mappings between Banach spaces.Studia Math. 57 (1976), 147–190. Zbl 0342.46034, MR 0425608, 10.4064/sm-57-2-147-190
Reference: [2] E. Asplund: Fréchet differentiability of convex functions.Acta Math. 121 (1968), 31–47. Zbl 0162.17501, MR 0231199, 10.1007/BF02391908
Reference: [3] Y. Benyamini, J. Lindenstauss: Geometric Nonlinear Functional Analysis Vol. I.Colloqium publications (American Mathematical Society) no. 48, Providence, 2000.
Reference: [4] P. Cannarsa, C. Sinestrari: Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control.Birkhäuser, Boston, 2004. MR 2041617
Reference: [5] P. Hartman: On functions representable as a difference of convex functions.Pacific J. Math. 9 (1959), 707–713. Zbl 0093.06401, MR 0110773, 10.2140/pjm.1959.9.707
Reference: [6] S. V. Konyagin: On points of existence and nonuniqueness of elements of best approximation.Theory of Functions and Its Applications, P.L. Ul’yanov ed., Izdat. Moskov. Univ. 1986, pp. 34–43. (Russian) MR 0990961
Reference: [7] J. Lindenstrauss, D. Preiss: Fréchet Differentiability of Lipschitz Functions (a survey).Recent Progress in Functional Analysis, Elsevier, 2001. MR 1861745
Reference: [8] J. Lindenstrauss, D. Preiss: On Fréchet differentiability of Lipschitz maps between Banach spaces.Annals Math. 157 (2003), 257–288. MR 1954267, 10.4007/annals.2003.157.257
Reference: [9] E. Matoušková: An almost nowhere Fréchet smooth norm on superreflexive spaces.Studia Math. 133 (1999), 93–99. MR 1671977, 10.4064/sm-133-1-93-99
Reference: [10] D. Pavlica: On the points of non-differentiability of convex functions.Comment. Math. Univ. Carolin. 45 (2004), 727–734. Zbl 1100.26006, MR 2103086
Reference: [11] R. R. Phelps: Gaussian null sets and differentiability of Lipschitz maps on Banach spaces.Pacific J. Math. 18 (1978), 523–531. MR 0510938
Reference: [12] R. R. Phelps: Convex Functions, Monotone Operators and Differentiability.Second edition, Lecture Notes in Math. 1364, Springer, Berlin, 1993. Zbl 0921.46039, MR 1238715
Reference: [13] D. Preiss: Differentiability of Lipschitz functions on Banach spaces.J. Funct. Anal. 91 (1990), 312–345. Zbl 0711.46036, MR 1058975, 10.1016/0022-1236(90)90147-D
Reference: [14] D. Preiss, L. Zajíček: Fréchet differentiation of convex functions in a Banach space with a separable dual.Proc. Amer. Math. Soc. 91 (1984), 202–204. MR 0740171
Reference: [15] D. Preiss, L. Zajíček: Stronger estimates of smallness of sets of Fréchet nondifferentiability of convex functions.Rend. Circ. Mat. Palermo (2), Suppl. no. 3 (1984), 219–223. MR 0744387
Reference: [16] D. Preiss, L. Zajíček: Directional derivatives of Lipschitz functions.Israel J. Math. 125 (2001), 1–27. MR 1853802, 10.1007/BF02773371
Reference: [17] Yu. G. Reshetnyak: On a generalization of convex surfaces.Mat. Sbornik 40 (1956), 381–398. (Russian) MR 0083757
Reference: [18] L. Veselý, L. Zajíček: Delta-convex mappings between Banach spaces and applications.Dissertationes Math. (Rozprawy Mat.) 289 (1989). MR 1016045
Reference: [19] L. Zajíček: On the differentiation of convex functions in finite and infinite dimensional spaces.Czechoslovak Math. J. 29 (1979), 340–348. MR 0536060
Reference: [20] L. Zajíček: On $\sigma $-porous sets in abstract spaces.Abstr. Appl. Anal. 2005 (2005), 509–534. Zbl 1098.28003, MR 2201041
.

Files

Files Size Format View
MathBohem_132-2007-1_8.pdf 332.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo