Previous |  Up |  Next

Article

Title: Existence results for a class of semilinear degenerate elliptic equations (English)
Author: Bonafede, Salvatore
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 128
Issue: 2
Year: 2003
Pages: 187-198
Summary lang: English
.
Category: math
.
Summary: We prove existence results for the Dirichlet problem associated with an elliptic semilinear second-order equation of divergence form. Degeneracy in the ellipticity condition is allowed. (English)
Keyword: weak subsolution
Keyword: degenerate equation
Keyword: critical point
Keyword: fixed-point theorems
MSC: 35A05
MSC: 35D05
MSC: 35J25
MSC: 35J60
MSC: 35J70
MSC: 47H10
MSC: 47N20
idZBL: Zbl 1075.35501
idMR: MR1995572
DOI: 10.21136/MB.2003.134032
.
Date available: 2009-09-24T22:08:33Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134032
.
Reference: [1] Adams, R. A.: Sobolev Spaces.Academic Press, New York, 1975. Zbl 0314.46030, MR 0450957
Reference: [2] Ambrosetti, A.: Critical points and nonlinear variational problems.Mem. Soc. Math. France 49 (1992). Zbl 0766.49006, MR 1164129
Reference: [3] Bonafede, S.: Quasilinear degenerate elliptic variational inequalities with discontinuous coefficients.Comment. Math. Univ. Carolin. 34 (1993), 55–61. Zbl 0823.35067, MR 1240203
Reference: [4] Bonafede, S.: A weak maximum principle and estimates of $\text{ess}\,\text{sup}_{\Omega } u$ for nonlinear degenerate elliptic equations.Czechoslovak Math. J. 121 (1996), 259–269. MR 1388615
Reference: [5] Drábek, P., Kufner, A., Nicolosi, F.: Quasilinear Elliptic Equations with Degenerations and Singularities De Gruyter Series in Nonlinear Analysis and Applications, New York, 1997.. MR 1460729
Reference: [6] Guglielmino, F., Nicolosi, F.: $W$-solutions of boundary value problems for degenerate elliptic operators.Ricerche di Matematica Suppl. 36 (1987), 59–72. MR 0956018
Reference: [7] Guglielmino, F., Nicolosi, F.: Existence theorems for boundary value problems associated with quasilinear elliptic equations.Ricerche di Matematica 37 (1988), 157–176. MR 1021963
Reference: [8] Ivanov, A. V., Mkrtycjan, P. Z.: On the solvability of the first boundary value problem for certain classes of degenerating quasilinear elliptic equations of second order.Boundary value problems of mathematical physics, O. A. Ladyzenskaja (ed.), Vol. 10, Proceedings of the Steklov Institute of Mathematics, A.M.S. Providence (1981, issue 2), pp. 11–35.
Reference: [9] Ladyzenskaja, O. A., Ural’tseva, N. N.: Linear and Quasilinear Elliptic Equations.Academic Press, New York, 1968. MR 0244627
Reference: [10] Murthy, M. K. V., Stampacchia, G.: Boundary value problems for some degenerate-elliptic operators.Ann. Mat. Pura Appl. 80 (1968), 1–122. MR 0249828, 10.1007/BF02413623
Reference: [11] Stampacchia, G.: Le probleme de Dirichlet pour les equations elliptiques du second ordre a coefficients discontinus.Annal. Inst. Fourier 15 (1965), 187–257. Zbl 0151.15401, MR 0192177
Reference: [12] Troisi, M.: Teoremi di inclusione per spazi di Sobolev non isotropi.Ricerche Mat. 18 (1989), 3–24. MR 0415302
.

Files

Files Size Format View
MathBohem_128-2003-2_7.pdf 346.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo