Title:
|
Pseudo $BL$-algebras and $DR\ell $-monoids (English) |
Author:
|
Kühr, Jan |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
128 |
Issue:
|
2 |
Year:
|
2003 |
Pages:
|
199-208 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
It is shown that pseudo $BL$-algebras are categorically equivalent to certain bounded $DR\ell $-monoids. Using this result, we obtain some properties of pseudo $BL$-algebras, in particular, we can characterize congruence kernels by means of normal filters. Further, we deal with representable pseudo $BL$-algebras and, in conclusion, we prove that they form a variety. (English) |
Keyword:
|
pseudo $BL$-algebra |
Keyword:
|
$DR\ell $-monoid |
Keyword:
|
filter |
Keyword:
|
polar |
Keyword:
|
representable pseudo $BL$-algebra |
MSC:
|
03B52 |
MSC:
|
03G25 |
MSC:
|
06D35 |
MSC:
|
06F05 |
idZBL:
|
Zbl 1024.06005 |
idMR:
|
MR1995573 |
DOI:
|
10.21136/MB.2003.134040 |
. |
Date available:
|
2009-09-24T22:08:42Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134040 |
. |
Reference:
|
[1] A. Dvurečenskij: On pseudo $MV$-algebras.Soft Computing 5 (2001), 347–354. Zbl 0998.06010, MR 1865858, 10.1007/s005000100136 |
Reference:
|
[2] A. Dvurečenskij: States on pseudo $MV$-algebras.Studia Logica 68 (2001), 301–327. Zbl 0999.06011, MR 1865858, 10.1023/A:1012490620450 |
Reference:
|
[3] A. Di Nola, G. Georgescu, A. Iorgulescu: Pseudo $BL$-algebras: Part I.Preprint. |
Reference:
|
[4] G. Georgescu, A. Iorgulescu: Pseudo $MV$-algebras.Mult. Val. Logic 6 (2001), 95–135. MR 1817439 |
Reference:
|
[5] G. Grätzer: General Lattice Theory.Birkhäuser, Berlin, 1998. MR 1670580 |
Reference:
|
[6] P. Hájek: Basic fuzzy logic and $BL$-algebras.Soft Computing 2 (1998), 124–128. 10.1007/s005000050043 |
Reference:
|
[7] P. Hájek: Metamathematics of Fuzzy Logic.Kluwer, Amsterdam, 1998. MR 1900263 |
Reference:
|
[8] T. Kovář: A general theory of dually residuated lattice ordered monoids.Ph.D. thesis, Palacký Univ., Olomouc, 1996. |
Reference:
|
[9] J. Kühr: Ideals of noncommutative $DR\ell $-monoids.Manuscript. |
Reference:
|
[10] J. Rachůnek: A non-commutative generalization of $MV$-algebras.Czechoslovak Math. J. 52 (2002), 255–273. Zbl 1012.06012, MR 1905434, 10.1023/A:1021766309509 |
Reference:
|
[11] J. Rachůnek: A duality between algebras of basic logic and bounded representable $DR\ell $-monoids.Math. Bohem. 126 (2001), 561–569. MR 1970259 |
Reference:
|
[12] K. L. N. Swamy: Dually residuated lattice ordered semigroups.Math. Ann. 159 (1965), 105–114. Zbl 0138.02104, MR 0183797, 10.1007/BF01360284 |
. |