Full entry |
PDF
(0.4 MB)
Feedback

traceable graph; Hamiltonian graph; Hamiltonian-connected graph

References:

[1] T. Asano, T. Nishizeki, T. Watanabe: **An upper bound on the length of a Hamiltonian walk of a maximal planar graph**. J. Graph Theory 4 (1980), 315–336. DOI 10.1002/jgt.3190040310 | MR 0584677

[2] T. Asano, T. Nishizeki, T. Watanabe: **An approximation algorithm for the Hamiltonian walk problem on maximal planar graphs**. Discrete Appl. Math. 5 (1983), 211–222. DOI 10.1016/0166-218X(83)90042-2 | MR 0683513

[3] J. C. Bermond: **On Hamiltonian walks**. Congr. Numerantium 15 (1976), 41–51. MR 0398891 | Zbl 0329.05113

[4] G. Chartrand, T. Thomas, V. Saenpholphat, P. Zhang: **On the Hamiltonian number of a graph**. Congr. Numerantium 165 (2003), 51–64. MR 2049121

[5] G. Chartrand, T. Thomas, V. Saenpholphat, P. Zhang: **A new look at Hamiltonian walks**. Bull. Inst. Combin. Appl. 42 (2004), 37–52. MR 2082480

[6] G. Chartrand, P. Zhang: **Introduction to Graph Theory**. McGraw-Hill, Boston, 2005.

[7] S. E. Goodman, S. T. Hedetniemi: **On Hamiltonian walks in graphs**. Congr. Numerantium (1973), 335–342. MR 0357223

[8] S. E. Goodman, S. T. Hedetniemi: **On Hamiltonian walks in graphs**. SIAM J. Comput. 3 (1974), 214–221. DOI 10.1137/0203017 | MR 0432492

[9] L. Nebeský: **A generalization of Hamiltonian cycles for trees**. Czech. Math. J. 26 (1976), 596–603. MR 0543670

[10] L. Lesniak: **Eccentric sequences in graphs**. Period. Math. Hungar 6 (1975), 287–293. DOI 10.1007/BF02017925 | MR 0406872 | Zbl 0363.05053

[11] P. Vacek: **On open Hamiltonian walks in graphs**. Arch. Math., Brno 27A (1991), 105–111. MR 1189647 | Zbl 0758.05067