Title:
|
Kurzweil’s PU integral as the Lebesgue integral (English) |
Author:
|
Výborný, Rudolf |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
131 |
Issue:
|
1 |
Year:
|
2006 |
Pages:
|
11-14 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For a merely continuous partition of unity the PU integral is the Lebesgue integral. (English) |
Keyword:
|
Kurzweil’s PU integral |
Keyword:
|
Lebesgue integral |
Keyword:
|
McShane integral |
MSC:
|
26A39 |
MSC:
|
26A42 |
MSC:
|
28A99 |
idZBL:
|
Zbl 1112.26013 |
idMR:
|
MR2210999 |
DOI:
|
10.21136/MB.2006.134077 |
. |
Date available:
|
2009-09-24T22:23:35Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134077 |
. |
Reference:
|
[1] Russel A. Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.American Mathematical Society, 1994. MR 1288751 |
Reference:
|
[2] J. Kurzweil, J. Jarník: A non absolutely convergent integral which admits transformation and can be used on manifolds.Czechoslovak Math. J. 35 (1985), 116–139. MR 0779340 |
Reference:
|
[3] J. Kurzweil, J. Jarník: A new and more powerful concept of the PU integral.Czechoslovak Math. J. 38 (1988), 8–48. MR 0925939 |
Reference:
|
[4] J. Kurzweil, J. Mawhin, W. Pfeffer: An integral defined by approximating BV partitions of unity.Czechoslovak Math. J. 41 (1991), 695–712. MR 1134958 |
Reference:
|
[5] Lee, Peng Yee, Rudolf Výborný: The Integral: An Easy Approach after Kurzweil and Henstock.Cambridge University Press, Cambridge, UK, 2000. MR 1756319 |
. |