| Title:
|
Kurzweil’s PU integral as the Lebesgue integral (English) |
| Author:
|
Výborný, Rudolf |
| Language:
|
English |
| Journal:
|
Mathematica Bohemica |
| ISSN:
|
0862-7959 (print) |
| ISSN:
|
2464-7136 (online) |
| Volume:
|
131 |
| Issue:
|
1 |
| Year:
|
2006 |
| Pages:
|
11-14 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
For a merely continuous partition of unity the PU integral is the Lebesgue integral. (English) |
| Keyword:
|
Kurzweil’s PU integral |
| Keyword:
|
Lebesgue integral |
| Keyword:
|
McShane integral |
| MSC:
|
26A39 |
| MSC:
|
26A42 |
| MSC:
|
28A99 |
| idZBL:
|
Zbl 1112.26013 |
| idMR:
|
MR2210999 |
| DOI:
|
10.21136/MB.2006.134077 |
| . |
| Date available:
|
2009-09-24T22:23:35Z |
| Last updated:
|
2020-07-29 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134077 |
| . |
| Reference:
|
[1] Russel A. Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.American Mathematical Society, 1994. MR 1288751 |
| Reference:
|
[2] J. Kurzweil, J. Jarník: A non absolutely convergent integral which admits transformation and can be used on manifolds.Czechoslovak Math. J. 35 (1985), 116–139. MR 0779340 |
| Reference:
|
[3] J. Kurzweil, J. Jarník: A new and more powerful concept of the PU integral.Czechoslovak Math. J. 38 (1988), 8–48. MR 0925939 |
| Reference:
|
[4] J. Kurzweil, J. Mawhin, W. Pfeffer: An integral defined by approximating BV partitions of unity.Czechoslovak Math. J. 41 (1991), 695–712. MR 1134958 |
| Reference:
|
[5] Lee, Peng Yee, Rudolf Výborný: The Integral: An Easy Approach after Kurzweil and Henstock.Cambridge University Press, Cambridge, UK, 2000. MR 1756319 |
| . |