Previous |  Up |  Next

Article

Title: The dual of the space of functions of bounded variation (English)
Author: Aye, Khaing Khaing
Author: Lee, Peng Yee
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 131
Issue: 1
Year: 2006
Pages: 1-9
Summary lang: English
.
Category: math
.
Summary: In the paper, we show that the space of functions of bounded variation and the space of regulated functions are, in some sense, the dual space of each other, involving the Henstock-Kurzweil-Stieltjes integral. (English)
Keyword: bounded variation
Keyword: two-norm space
Keyword: dual space
Keyword: linear functional
Keyword: Henstock integral
Keyword: Stieltjes integral
Keyword: regulated function
MSC: 26A39
MSC: 26A42
MSC: 26A45
MSC: 46B26
MSC: 46E99
idZBL: Zbl 1112.26008
idMR: MR2210998
DOI: 10.21136/MB.2006.134078
.
Date available: 2009-09-24T22:23:26Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134078
.
Reference: [1] D. Franková: Regulated functions.Math. Bohem. 116 (1991), 20–59. MR 1100424
Reference: [2] J. Dieudonné: Foundations of Modern Analysis.New-York, 1960. MR 0120319
Reference: [3] K. K. Aye: The duals of some Banach spaces.Ph.D Thesis, Nanyang Technological University, 2002.
Reference: [4] M. Tvrdý: Linear bounded functionals on the space of regular regulated functions.Tatra Mt. Math. Publ. 8 (1996), 203–210. MR 1475282
Reference: [5] P. Habala, P. Hájek, V. Zizler: Introduction to Banach Spaces.1996.
Reference: [6] P. Y. Lee: Lanzhou Lectures on Henstock Integration.World Scientific, 1989. Zbl 0699.26004, MR 1050957
Reference: [7] P. Y. Lee, R. Výborný: The Integral: An Easy Approach after Kurzweil and Henstock.Cambridge University Press, 2000. MR 1756319
Reference: [8] T. H. Hildebrandt: Introduction of the Theory of Integration.Academic Press, 1963. MR 0154957
Reference: [9] T. H. Hildebrandt: Linear continuous functionals on the space (BV) with weak topologies.Proc. Amer. Math. Soc. 17 (1966), 658–664. Zbl 0152.13604, MR 0193490
Reference: [10] Tom M. Apostol: Mathematical Analysis.1957.
Reference: [11] W. Orlicz: Linear Functional Analysis.World Scientific, 1992. Zbl 0799.46002, MR 1182560
Reference: [12] K. K. Aye, P. Y. Lee: Orthogonally additive functionals on BV.Math. Bohem. 129 (2004), 411–419. MR 2102614
Reference: [13] Š. Schwabik: A survey of some new results for regulated functions.Seminario Brasileiro de analise 28 (1988).
Reference: [14] M. Brokate, P. Krejčí: Duality in the space of regulated functions and the play operator.Math. Z. 245 (2003), 667–668. MR 2020705, 10.1007/s00209-003-0563-6
.

Files

Files Size Format View
MathBohem_131-2006-1_1.pdf 310.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo