Previous |  Up |  Next

Article

Title: Non-singular covers over ordered monoid rings (English)
Author: Bican, Ladislav
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 131
Issue: 1
Year: 2006
Pages: 95-104
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a multiplicative monoid. If $RG$ is a non-singular ring such that the class of all non-singular $RG$-modules is a cover class, then the class of all non-singular $R$-modules is a cover class. These two conditions are equivalent whenever $G$ is a well-ordered cancellative monoid such that for all elements $g,h\in G$ with $g < h$ there is $l\in G$ such that $lg = h$. For a totally ordered cancellative monoid the equalities $Z(RG) = Z(R)G$ and $\sigma (RG) = \sigma (R)G$ hold, $\sigma $ being Goldie’s torsion theory. (English)
Keyword: hereditary torsion theory
Keyword: torsion theory of finite type
Keyword: Goldie’s torsion theory
Keyword: non-singular module
Keyword: non-singular ring
Keyword: monoid ring
Keyword: precover class
Keyword: cover class
MSC: 06F05
MSC: 16D50
MSC: 16D80
MSC: 16S36
MSC: 16S90
MSC: 18E40
idZBL: Zbl 1111.16029
idMR: MR2211006
DOI: 10.21136/MB.2006.134079
.
Date available: 2009-09-24T22:24:37Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134079
.
Reference: [1] F. W. Anderson, K. R. Fuller: Rings and Categories of Modules.Graduate Texts in Mathematics, vol. 13, Springer, 1974. MR 0417223
Reference: [2] L. Bican: Torsionfree precovers.Proceedings of the Klagenfurt Conference 2003 (66. AAA), Verlag Johannes Heyn, Klagenfurt, 2004, pp. 1–6. Zbl 1074.16002, MR 2080845
Reference: [3] L. Bican: Precovers and Goldie’s torsion theory.Math. Bohem. 128 (2003), 395–400. Zbl 1057.16027, MR 2032476
Reference: [4] L. Bican: On torsionfree classes which are not precover classes.(to appear). Zbl 1166.16013, MR 2411109
Reference: [5] L. Bican: Non-singular precovers over polynomial rings.(to appear). Zbl 1106.16032, MR 2281000
Reference: [6] L. Bican, R. El Bashir, E. Enochs: All modules have flat covers.Proc. London Math. Society 33 (2001), 649–652. MR 1832549
Reference: [7] L. Bican, B. Torrecillas: Precovers.Czechoslovak Math. J. 53 (2003), 191–203. MR 1962008
Reference: [8] L. Bican, B. Torrecillas: On covers.J. Algebra 236 (2001), 645–650. MR 1813494, 10.1006/jabr.2000.8562
Reference: [9] L. Bican, T. Kepka, P. Němec: Rings, Modules, and Preradicals.Marcel Dekker, New York, 1982. MR 0655412
Reference: [10] J. Golan: Torsion Theories.Pitman Monographs and Surveys in Pure and Applied Matematics, 29, Longman Scientific and Technical, 1986. Zbl 0657.16017, MR 0880019
Reference: [11] S. H. Rim, M. L. Teply: On coverings of modules.Tsukuba J. Math. 24 (2000), 15–20. MR 1791327, 10.21099/tkbjm/1496164042
Reference: [12] M. L. Teply: Torsion-free covers II.Israel J. Math. 23 (1976), 132–136. Zbl 0321.16014, MR 0417245
Reference: [13] M. L. Teply: Some aspects of Goldie’s torsion theory.Pacif. J. Math. 29 (1969), 447–459. Zbl 0174.06803, MR 0244323, 10.2140/pjm.1969.29.447
Reference: [14] J. Xu: Flat Covers of Modules.Lecture Notes in Mathematics 1634, Springer, Berlin, 1996. Zbl 0860.16002, MR 1438789
.

Files

Files Size Format View
MathBohem_131-2006-1_9.pdf 316.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo