Previous |  Up |  Next

Article

Title: Isomorphism of commutative group algebras of $p$-mixed splitting groups over rings of characteristic zero (English)
Author: Danchev, Peter
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 131
Issue: 1
Year: 2006
Pages: 85-93
Summary lang: English
.
Category: math
.
Summary: Suppose $G$ is a $p$-mixed splitting abelian group and $R$ is a commutative unitary ring of zero characteristic such that the prime number $p$ satisfies $p\notin \mathop {\text{inv}}(R) \cup \mathop {\text{zd}}(R)$. Then $R(H)$ and $R(G)$ are canonically isomorphic $R$-group algebras for any group $H$ precisely when $H$ and $G$ are isomorphic groups. This statement strengthens results due to W. May published in J. Algebra (1976) and to W. Ullery published in Commun. Algebra (1986), Rocky Mt. J. Math. (1992) and Comment. Math. Univ. Carol. (1995). (English)
Keyword: group algebras
Keyword: isomorphisms
Keyword: $p$-mixed splitting groups
Keyword: rings with zero characteristic
MSC: 16S34
MSC: 16U60
MSC: 20C07
MSC: 20K10
MSC: 20K21
idZBL: Zbl 1111.20007
idMR: MR2211005
DOI: 10.21136/MB.2006.134084
.
Date available: 2009-09-24T22:24:28Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134084
.
Reference: [1] D. Beers, F. Richman, E. A. Walker: Group algebras of abelian groups.Rend. Sem. Mat. Univ. Padova 69 (1983), 41–50. MR 0716984
Reference: [2] P. V. Danchev: Isomorphic semisimple group algebras.C. R. Acad. Bulg. Sci. 53 (2000), 13–14. Zbl 0964.20001, MR 1779521
Reference: [3] P. V. Danchev: A new simple proof of the W. May’s claim: $FG$ determines $G/G_0$.Riv. Mat. Univ. Parma 1 (2002), 69–71. Zbl 1019.20002, MR 1951976
Reference: [4] P. V. Danchev: A note on isomorphic commutative group algebras over certain rings.An. St. Univ. Ovidius Constanta 13 (2005), 69–74. Zbl 1113.20005, MR 2230861
Reference: [5] J. M. Irwin, S. A. Khabbaz, G. Rayna: The role of the tensor product in the splitting of abelian groups.J. Algebra 14 (1970), 423–442. MR 0255675, 10.1016/0021-8693(70)90093-1
Reference: [6] G. Karpilovsky: On some properties of group rings.J. Austral. Math. Soc., Ser. A 29 (1980), 385–392. Zbl 0432.16007, MR 0578697, 10.1017/S1446788700021534
Reference: [7] W. L. May: Commutative group algebras.Trans. Amer. Math. Soc. 136 (1969), 139–149. Zbl 0182.04401, MR 0233903, 10.1090/S0002-9947-1969-0233903-9
Reference: [8] W. L. May: Invariants for commutative group algebras, Ill.J. Math. 15 (1971), 525–531. MR 0286903, 10.1215/ijm/1256052619
Reference: [9] W. L. May: Group algebras over finitely generated rings.J. Algebra 39 (1976), 483–511. Zbl 0328.16012, MR 0399232, 10.1016/0021-8693(76)90049-1
Reference: [10] W. L. May: Isomorphism of group algebras.J. Algebra 40 (1976), 10–18. Zbl 0329.20002, MR 0414618, 10.1016/0021-8693(76)90083-1
Reference: [11] W. D. Ullery: Isomorphism of group algebras.Commun. Algebra 14 (1986), 767–785. Zbl 0587.16011, MR 0834462, 10.1080/00927878608823334
Reference: [12] W. D. Ullery: On isomorphism of group algebras of torsion abelian groups.Rocky Mt. J. Math. 22 (1992), 1111–1122. Zbl 0773.16008, MR 1183707, 10.1216/rmjm/1181072715
Reference: [13] W. D. Ullery: A note on group algebras of $p$-primary abelian groups.Comment. Math. Univ. Carol. 36 (1995), 11–14. Zbl 0828.20005, MR 1334408
.

Files

Files Size Format View
MathBohem_131-2006-1_8.pdf 316.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo