Previous |  Up |  Next

Article

Title: The converse problem for a generalized Dhombres functional equation (English)
Author: Reich, L.
Author: Smítal, J.
Author: Štefánková, M.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 130
Issue: 3
Year: 2005
Pages: 301-308
Summary lang: English
.
Category: math
.
Summary: We consider the functional equation $f(xf(x))=\varphi (f(x))$ where $\varphi \: J\rightarrow J$ is a given homeomorphism of an open interval $J\subset (0,\infty )$ and $f\: (0,\infty ) \rightarrow J$ is an unknown continuous function. A characterization of the class $\mathcal S(J,\varphi )$ of continuous solutions $f$ is given in a series of papers by Kahlig and Smítal 1998–2002, and in a recent paper by Reich et al. 2004, in the case when $\varphi $ is increasing. In the present paper we solve the converse problem, for which continuous maps $f\: (0,\infty )\rightarrow J$, where $J$ is an interval, there is an increasing homeomorphism $\varphi $ of $J$ such that $f\in \mathcal S(J,\varphi )$. We also show why the similar problem for decreasing $\varphi $ is difficult. (English)
Keyword: iterative functional equation
Keyword: equation of invariant curves
Keyword: general continuous solution
Keyword: converse problem
MSC: 26A18
MSC: 39B12
MSC: 39B22
idZBL: Zbl 1110.39014
idMR: MR2164659
DOI: 10.21136/MB.2005.134093
.
Date available: 2009-09-24T22:21:27Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134093
.
Reference: [1] J. Dhombres: Applications associatives ou commutatives.C. R. Acad. Sci. Paris, Sér. A 281 (1975), 809–812. Zbl 0344.39009, MR 0419662
Reference: [2] P. Kahlig, J. Smítal: On a parametric functional equation of Dhombres type.Aequationes Math. 56 (1998), 63–68. MR 1628303, 10.1007/s000100050044
Reference: [3] P. Kahlig, J. Smítal: On a generalized Dhombres functional equation.Aequationes Math. 62 (2001), 18–29. MR 1849137, 10.1007/PL00000138
Reference: [4] P. Kahlig, J. Smítal: On a generalized Dhombres functional equation II.Math. Bohem. 127 (2002), 547–555. MR 1942640
Reference: [5] L. Reich, J. Smítal, M. Štefánková: The continuous solutions of a generalized Dhombres functional equation.Math. Bohem. 129 (2004), 399–410. MR 2102613
Reference: [6] M. Kuczma: Functional Equations in a Single Variable.Polish Scientific Publishers, Warsawa, 1968. Zbl 0196.16403, MR 0228862
Reference: [7] M. Kuczma, B. Choczewski, R. Ger: Iterative Functional Equations.Encyclopedia of mathematics and its applications, 32, Cambridge University Press, Cambridge, 1990. MR 1067720
.

Files

Files Size Format View
MathBohem_130-2005-3_7.pdf 314.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo