Title:
|
Normalization of $MV$-algebras (English) |
Author:
|
Chajda, I. |
Author:
|
Halaš, R. |
Author:
|
Kühr, J. |
Author:
|
Vanžurová, A. |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
130 |
Issue:
|
3 |
Year:
|
2005 |
Pages:
|
283-300 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider algebras determined by all normal identities of $MV$-algebras, i.e. algebras of many-valued logics. For such algebras, we present a representation based on a normalization of a sectionally involutioned lattice, i.e. a $q$-lattice, and another one based on a normalization of a lattice-ordered group. (English) |
Keyword:
|
$MV$-algebra |
Keyword:
|
abelian lattice-ordered group |
Keyword:
|
$q$-lattice |
Keyword:
|
normalization of a variety |
MSC:
|
06D05 |
MSC:
|
06D35 |
MSC:
|
06F20 |
MSC:
|
08B20 |
idZBL:
|
Zbl 1112.06012 |
idMR:
|
MR2164658 |
DOI:
|
10.21136/MB.2005.134099 |
. |
Date available:
|
2009-09-24T22:21:18Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134099 |
. |
Reference:
|
[1] Anderson, M., Feil, T.: Lattice-ordered groups. An Introduction.D. Reidel., Dordrecht, 1988. MR 0937703 |
Reference:
|
[2] Chang, C. C.: Algebraic analysis of many valued logics.Trans. Amer. Math. Soc. 88 (1958), 467–490. Zbl 0084.00704, MR 0094302, 10.1090/S0002-9947-1958-0094302-9 |
Reference:
|
[3] Chang, C. C.: A new proof of the Łukasziewicz axioms.Trans. Amer. Math. Soc. 93 (1959), 74–80. MR 0122718 |
Reference:
|
[4] Cignoli, R.: Free lattice-ordered abelian groups and varieties of $MV$-algebras.Proc. IX. Latin. Amer. Symp. Math. Logic, Part 1, Not. Log. Mat. 38 (1993), 113–118. Zbl 0827.06012, MR 1332526 |
Reference:
|
[5] Cignoli, R. L. O., D’Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many- Valued Reasoning.Kluwer, Dordrecht, 2000. MR 1786097 |
Reference:
|
[6] Chajda, I.: Lattices in quasiordered sets.Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 31 (1992), 6–12. Zbl 0773.06002, MR 1212600 |
Reference:
|
[7] Chajda, I.: Congruence properties of algebras in nilpotent shifts of varieties.General Algebra and Discrete Mathematics (K. Denecke, O. Lüders, eds.), Heldermann, Berlin, 1995, pp. 35–46. Zbl 0821.08009, MR 1336150 |
Reference:
|
[8] Chajda, I.: Normally presented varieties.Algebra Universalis 34 (1995), 327–335. Zbl 0842.08007, MR 1350845, 10.1007/BF01182089 |
Reference:
|
[9] Chajda, I., Graczyńska, E.: Algebras presented by normal identities.Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 38 (1999), 49–58. MR 1767191 |
Reference:
|
[10] Chajda, I., Halaš, R., Kühr, J.: Distributive lattices with sectionally antitone involutions.(to appear). MR 2160352 |
Reference:
|
[11] Mel’nik, I. I.: Nilpotent shifts of varieties.Math. Notes 14 (1973), 692–696. (Russian) MR 0366782 |
Reference:
|
[12] Mundici, D.: Interpretation of AF $C^{*}$-algebras in Łukasiewicz sentential calculus.J. Funct. Anal. 65 (1986), 15–63. Zbl 0597.46059, MR 0819173, 10.1016/0022-1236(86)90015-7 |
Reference:
|
[13] Mundici, D.: $MV$-algebras are categorically equivalent to bouded commutative $BCK$- algebras.Math. Japon. 31 (1986), 889–894. MR 0870978 |
Reference:
|
[14] Rachůnek, J.: $MV$-algebras are categorically equivalent to a class of ${DRl}_{1(i)}$-semigroups.Math. Bohem. 123 (1998), 437–441. MR 1667115 |
. |