Previous |  Up |  Next

Article

Title: Normalization of $MV$-algebras (English)
Author: Chajda, I.
Author: Halaš, R.
Author: Kühr, J.
Author: Vanžurová, A.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 130
Issue: 3
Year: 2005
Pages: 283-300
Summary lang: English
.
Category: math
.
Summary: We consider algebras determined by all normal identities of $MV$-algebras, i.e. algebras of many-valued logics. For such algebras, we present a representation based on a normalization of a sectionally involutioned lattice, i.e. a $q$-lattice, and another one based on a normalization of a lattice-ordered group. (English)
Keyword: $MV$-algebra
Keyword: abelian lattice-ordered group
Keyword: $q$-lattice
Keyword: normalization of a variety
MSC: 06D05
MSC: 06D35
MSC: 06F20
MSC: 08B20
idZBL: Zbl 1112.06012
idMR: MR2164658
DOI: 10.21136/MB.2005.134099
.
Date available: 2009-09-24T22:21:18Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134099
.
Reference: [1] Anderson, M., Feil, T.: Lattice-ordered groups. An Introduction.D. Reidel., Dordrecht, 1988. MR 0937703
Reference: [2] Chang, C. C.: Algebraic analysis of many valued logics.Trans. Amer. Math. Soc. 88 (1958), 467–490. Zbl 0084.00704, MR 0094302, 10.1090/S0002-9947-1958-0094302-9
Reference: [3] Chang, C. C.: A new proof of the Łukasziewicz axioms.Trans. Amer. Math. Soc. 93 (1959), 74–80. MR 0122718
Reference: [4] Cignoli, R.: Free lattice-ordered abelian groups and varieties of $MV$-algebras.Proc. IX. Latin. Amer. Symp. Math. Logic, Part 1, Not. Log. Mat. 38 (1993), 113–118. Zbl 0827.06012, MR 1332526
Reference: [5] Cignoli, R. L. O., D’Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many- Valued Reasoning.Kluwer, Dordrecht, 2000. MR 1786097
Reference: [6] Chajda, I.: Lattices in quasiordered sets.Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 31 (1992), 6–12. Zbl 0773.06002, MR 1212600
Reference: [7] Chajda, I.: Congruence properties of algebras in nilpotent shifts of varieties.General Algebra and Discrete Mathematics (K. Denecke, O. Lüders, eds.), Heldermann, Berlin, 1995, pp. 35–46. Zbl 0821.08009, MR 1336150
Reference: [8] Chajda, I.: Normally presented varieties.Algebra Universalis 34 (1995), 327–335. Zbl 0842.08007, MR 1350845, 10.1007/BF01182089
Reference: [9] Chajda, I., Graczyńska, E.: Algebras presented by normal identities.Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 38 (1999), 49–58. MR 1767191
Reference: [10] Chajda, I., Halaš, R., Kühr, J.: Distributive lattices with sectionally antitone involutions.(to appear). MR 2160352
Reference: [11] Mel’nik, I. I.: Nilpotent shifts of varieties.Math. Notes 14 (1973), 692–696. (Russian) MR 0366782
Reference: [12] Mundici, D.: Interpretation of AF $C^{*}$-algebras in Łukasiewicz sentential calculus.J. Funct. Anal. 65 (1986), 15–63. Zbl 0597.46059, MR 0819173, 10.1016/0022-1236(86)90015-7
Reference: [13] Mundici, D.: $MV$-algebras are categorically equivalent to bouded commutative $BCK$- algebras.Math. Japon. 31 (1986), 889–894. MR 0870978
Reference: [14] Rachůnek, J.: $MV$-algebras are categorically equivalent to a class of ${DRl}_{1(i)}$-semigroups.Math. Bohem. 123 (1998), 437–441. MR 1667115
.

Files

Files Size Format View
MathBohem_130-2005-3_6.pdf 401.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo