Previous |  Up |  Next

Article

Title: On holomorphic continuation of functions along boundary sections (English)
Author: Imomkulov, S. A.
Author: Khujamov, J. U.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 130
Issue: 3
Year: 2005
Pages: 309-322
Summary lang: English
.
Category: math
.
Summary: Let $D^{\prime } \subset \mathbb{C}^{n-1}$ be a bounded domain of Lyapunov and $f(z^{\prime },z_n)$ a holomorphic function in the cylinder $D=D^{\prime }\times U_n$ and continuous on $\bar{D}$. If for each fixed $a^{\prime }$ in some set $E\subset \partial D^{\prime }$, with positive Lebesgue measure $\text{mes}\,E>0$, the function $f(a^{\prime },z_n)$ of $z_n$ can be continued to a function holomorphic on the whole plane with the exception of some finite number (polar set) of singularities, then $f(z^{\prime },z_n)$ can be holomorphically continued to $(D^{\prime }\times \mathbb{C})\setminus S$, where $S$ is some analytic (closed pluripolar) subset of $D^{\prime }\times \mathbb{C}$. (English)
Keyword: holomorphic function
Keyword: holomorphic continuation
Keyword: pluripolar set
Keyword: pseudoconcave set
Keyword: Jacobi-Hartogs series
MSC: 32D15
MSC: 46G20
idZBL: Zbl 1113.46038
idMR: MR2164660
DOI: 10.21136/MB.2005.134101
.
Date available: 2009-09-24T22:21:35Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134101
.
Reference: [1] Bedford E., Taylor B. A.: A new capacity for plurisubharmonic functions.Acta. Math. 149 (1982), 1–40. MR 0674165, 10.1007/BF02392348
Reference: [2] Gonchar A. A.: A local condition for single-valuedness of analytic functions.Math. USSR Sb. 89 (1972), 148–164. (Russian) MR 0322144
Reference: [3] Hartogs F.: Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiben.Math. Ann. 62 (1906), 1–88. MR 1511365, 10.1007/BF01448415
Reference: [4] Kazaryan M. V.: On holomorphic continuation of functions with special singularities in ${n}$.Akad. Nauk Armyan. SSR Dokl. 76 (1983), 13–17. (Russian) MR 0704694
Reference: [5] Oka K.: Note sur les familles des fonctions analytiques multiformes ets.J. Sci. Hiroshima Univ., Ser. A 4 (1934), 93–98. 10.32917/hmj/1558749763
Reference: [6] Privalov I. I., Kuznetsov P. I.: Boundary problems and various classes of harmonic and subharmonic functions defined in arbitrary domains.Math. USSR Sb. 6 (1939), 345–375. (Russian)
Reference: [7] Rothstein W.: Ein neuer Beweis des Hartogsschen Hauptsatzes und seine Ausdehnung auf meromorphe Functionen.Math. Z. 53 (1950), 84–95. MR 0037365, 10.1007/BF01175583
Reference: [8] Sadullaev A. S.: Rational approximations and pluripolar sets.Math. USSR Sb. 119 (1982), 96–118. Zbl 0511.32011, MR 0672412
Reference: [9] Sadullaev A. S.: A criterion for rapid rational approximation in ${n}$.Math. USSR Sb. 125 (1984), 269–279. (Russian) MR 0764481
Reference: [10] Sadullaev A. S., Chirka E. M.: On continuation of functions with polar singularities.Mat. Sb., N. Ser. 132 (1987), 383–390. (Russian) MR 0889599
Reference: [11] Shabat B. V.: Introduction to the complex analysis. Part II.Nauka, Moskva, 1985. (Russian) MR 0831938
Reference: [12] Slodkowski Z.: On subharmonicity of the capacity of the spectrum.Proc. Amer. Math. Soc. 81 (1981), 243–249. Zbl 0407.46046, MR 0593466, 10.1090/S0002-9939-1981-0593466-6
Reference: [13] Tuychiev T. T.: Continuation of functions along a fixed direction.Sibir. Math. Journal 229 (1988), 142–147. (Russian)
.

Files

Files Size Format View
MathBohem_130-2005-3_8.pdf 366.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo