Previous |  Up |  Next

Article

Title: A note on radio antipodal colourings of paths (English)
Author: Khennoufa, Riadh
Author: Togni, Olivier
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 130
Issue: 3
Year: 2005
Pages: 277-282
Summary lang: English
.
Category: math
.
Summary: The radio antipodal number of a graph $G$ is the smallest integer $c$ such that there exists an assignment $f\: V(G)\rightarrow \lbrace 1,2,\ldots ,c\rbrace $ satisfying $|f(u)-f(v)|\ge D-d(u,v)$ for every two distinct vertices $u$ and $v$ of $G$, where $D$ is the diameter of $G$. In this note we determine the exact value of the antipodal number of the path, thus answering the conjecture given in [G. Chartrand, D. Erwin and P. Zhang, Math. Bohem. 127 (2002), 57–69]. We also show the connections between this colouring and radio labelings. (English)
Keyword: radio antipodal colouring
Keyword: radio number
Keyword: distance labeling
MSC: 05C12
MSC: 05C15
MSC: 05C78
idZBL: Zbl 1110.05033
idMR: MR2164657
DOI: 10.21136/MB.2005.134100
.
Date available: 2009-09-24T22:21:08Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134100
.
Reference: [1] G. Chartrand, D. Erwin, F. Harary, P. Zhang: Radio labelings of graphs.Bull. Inst. Combin. Appl. 33 (2001), 77–85. MR 1913399
Reference: [2] G. Chartrand, D. Erwin, P. Zhang: Radio antipodal colorings of cycles.Congr. Numerantium 144 (2000), 129–141. MR 1817928
Reference: [3] G. Chartrand, D. Erwin, P. Zhang: Radio antipodal colorings of graphs.Math. Bohem. 127 (2002), 57–69. MR 1895247
Reference: [4] G. Chartrand, L. Nebeský, P. Zhang: Radio $k$-colorings of paths.Discuss. Math. Graph Theory 24 (2004), 5–21. MR 2118291, 10.7151/dmgt.1209
Reference: [5] D. Kuo, J.-H. Yan: On $L(2,1)$-labelings of Cartesian products of paths and cycles.Discrete Math. 283 (2004), 137–144. MR 2061491, 10.1016/j.disc.2003.11.009
Reference: [6] D. Liu, X. Zhu: Multi-level distance labelings for paths and cycles.(to appear).
.

Files

Files Size Format View
MathBohem_130-2005-3_5.pdf 304.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo