Previous |  Up |  Next

Article

Title: Some full characterizations of the strong McShane integral (English)
Author: Lee, Tuo-Yeong
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 129
Issue: 3
Year: 2004
Pages: 305-312
Summary lang: English
.
Category: math
.
Summary: Some full characterizations of the strong McShane integral are obtained. (English)
Keyword: strong McShane integral
Keyword: strong absolute continuity
Keyword: McShane variational measure
MSC: 26A36
MSC: 26A39
MSC: 26B30
idZBL: Zbl 1080.26006
idMR: MR2092716
DOI: 10.21136/MB.2004.134144
.
Date available: 2009-09-24T22:15:28Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134144
.
Reference: [1] A. M. Bruckner, J. B. Bruckner, B. S. Thomson: Real Analysis.Prentice-Hall, 1997.
Reference: [2] J. A. Clarkson: Uniformly convex spaces.Trans. Amer. Math. Soc. 40 (1936), 396–414. Zbl 0015.35604, MR 1501880, 10.1090/S0002-9947-1936-1501880-4
Reference: [3] L. Di Piazza: Variational measures in the theory of the integration in ${\mathbb{R}}^m$.Czechoslovak Math. J. 51 (2001), 95–110. MR 1814635, 10.1023/A:1013705821657
Reference: [4] D. H. Fremlin, J. Mendoza: On the integration of vector-valued functions.Illinois J. Math. 38 (1994), 127–141. MR 1245838, 10.1215/ijm/1255986891
Reference: [5] R. A. Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.Amer. Math. Soc., Providence, 1994. Zbl 0807.26004, MR 1288751
Reference: [6] J. Jarník, J. Kurzweil: Perron-type integration on $n$-dimensional intervals and its properties.Czechoslovak Math. J. 45 (1995), 79–106. MR 1314532
Reference: [7] Lee Peng Yee, R. Výborný: The Integral, An Easy Approach after Kurzweil and Henstock.Australian Mathematical Society Lecture Ser. 14, Cambridge University Press, 2000. MR 1756319
Reference: [8] Lee Tuo-Yeong: Every absolutely Henstock-Kurzweil integrable function is McShane integrable: an alternative proof.(to appear). Zbl 1064.28011, MR 2095582
Reference: [9] W. F. Pfeffer: A note on the generalized Riemann integral.Proc. Amer. Math. Soc. 103 (1988), 1161–1166. Zbl 0656.26010, MR 0955000, 10.1090/S0002-9939-1988-0955000-4
Reference: [10] W. F. Pfeffer: The Riemann Approach to Integration.Cambridge Univ. Press, Cambridge, 1993. Zbl 0804.26005, MR 1268404
Reference: [11] Š. Schwabik, Ye Guoju: On the strong McShane integral of functions with values in a Banach space.Czechoslovak Math. J. 51 (2001), 819–828. MR 1864044, 10.1023/A:1013721114330
Reference: [12] C. Swartz: Introduction to the Gauge Integrals.World Scientific, 2001. MR 1845270
Reference: [13] B. S. Thomson: Derivates of Interval Functions.Mem. Amer. Math. Soc. 452, 1991. Zbl 0734.26003, MR 1078198
.

Files

Files Size Format View
MathBohem_129-2004-3_7.pdf 316.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo