Title:
|
A step to Kurzweil-Henstock—an outline (English) |
Author:
|
Craven, B. D. |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
129 |
Issue:
|
3 |
Year:
|
2004 |
Pages:
|
297-304 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A short approach to the Kurzweil-Henstock integral is outlined, based on approximating a real function on a compact interval by suitable step-functions, and using filterbase convergence to define the integral. The properties of the integral are then easy to establish. (English) |
Keyword:
|
integral |
Keyword:
|
Kurzweil-Henstock integral |
Keyword:
|
step-function |
Keyword:
|
filterbase |
MSC:
|
26A39 |
idZBL:
|
Zbl 1080.26004 |
idMR:
|
MR2092715 |
DOI:
|
10.21136/MB.2004.134150 |
. |
Date available:
|
2009-09-24T22:15:19Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134150 |
. |
Reference:
|
[1] B. D. Craven: Lebesgue Measure and Integral.Pitman, Boston, 1982. Zbl 0491.28001, MR 0733102 |
Reference:
|
[2] J. Dugundji: Topology.Allyn & Bacon, Boston, 1966. Zbl 0144.21501, MR 0193606 |
Reference:
|
[3] R. Henstock: Linear Analysis.Butterworths, 1967. Zbl 0172.39001, MR 0419707 |
Reference:
|
[4] R. Henstock: The General Theory of Integration.Clarendon Press, Oxford, U.K., 1991. Zbl 0745.26006, MR 1134656 |
Reference:
|
[5] J. Kurzweil: Nichtabsolut konvergente Intgegrale.Teubner, Leipzig, 1980. MR 0597703 |
Reference:
|
[6] S. Leader: The Kurzweil-Henstock Integral and its Differentials.Marcel Dekker, New York, 2001. Zbl 0984.26002, MR 1837270 |
Reference:
|
[7] Lee Peng-Yee: Lanzhou Lectures on Integration.World Scientific, Singapore, 1989. MR 1050957 |
Reference:
|
[8] Lee Peng-Yee, R. Výborný: The Integral: an easy approach after Kurzweil and Henstock.Cambridge University Press, 2000. MR 1756319 |
Reference:
|
[9] E. Schechter: Handbook of Analysis and its Foundations.Academic Press, San Diego, 1997 (Chapter 24: Generalized Riemann integrals). MR 1417259 |
Reference:
|
[10] Š. Schwabik: Integration on $\mathbb{R}$: Kurzweil Theory.Charles University, Praha, 1999. (Czech) |
. |