Title:
|
Lexicographic extensions of dually residuated lattice ordered monoids (English) |
Author:
|
Rachůnek, Jiří |
Author:
|
Šalounová, Dana |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
129 |
Issue:
|
3 |
Year:
|
2004 |
Pages:
|
283-295 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Dually residuated lattice ordered monoids ($DR\ell $-monoids) are common generalizations of, e.g., lattice ordered groups, Brouwerian algebras and algebras of logics behind fuzzy reasonings ($MV$-algebras, $BL$-algebras) and their non-commutative variants ($GMV$-algebras, pseudo $BL$-algebras). In the paper, lex-extensions and lex-ideals of $DR\ell $-monoids (which need not be commutative or bounded) satisfying a certain natural condition are studied. (English) |
Keyword:
|
$DR\ell $-monoid |
Keyword:
|
ideal |
Keyword:
|
lex-extension |
Keyword:
|
lex-ideal |
Keyword:
|
algebras of fuzzy logics |
MSC:
|
03G10 |
MSC:
|
03G25 |
MSC:
|
06D35 |
MSC:
|
06F05 |
MSC:
|
06F15 |
idZBL:
|
Zbl 1080.06024 |
idMR:
|
MR2092714 |
DOI:
|
10.21136/MB.2004.134151 |
. |
Date available:
|
2009-09-24T22:15:12Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134151 |
. |
Reference:
|
[1] A. Bigard, K. Keimel, S. Wolfenstein: Groupes et Anneaux Réticulés.Springer, Berlin, 1977. MR 0552653 |
Reference:
|
[2] R. L. O. Cignoli, I. M. L. D’Ottaviano, D. Mundici: Foundations of Many-Valued Reasoning.Kluwer Acad. Publ., Dordrecht, 2000. MR 1786097 |
Reference:
|
[3] P. Conrad: Lex-subgroups of lattice ordered groups.Czechoslovak Math. J. 18 (1968), 86–103. Zbl 0155.05902, MR 0225697 |
Reference:
|
[4] A. Di Nola, G. Georgescu, A. Iorgulescu: Pseudo $BL$-algebras: Part I.Multiple-Valued Logic 8 (2002), 673–714. MR 1948853 |
Reference:
|
[5] A. M. W. Glass: Partially Ordered Groups.World Scientific, Singapore, 1999. Zbl 0933.06010, MR 1791008 |
Reference:
|
[6] G. Georgescu, A. Iorgulescu: Pseudo $MV$-algebras.Multiple Valued Logic 6 (2001), 95–135. MR 1817439 |
Reference:
|
[7] P. Hájek: Metamathematics of Fuzzy Logic.Kluwer, Amsterdam, 1998. MR 1900263 |
Reference:
|
[8] D. Hort, J. Rachůnek: Lex ideals of generalized $MV$-algebras.C. S. Calude, M. J. Dinneen, S. Sburlan (eds.), Combinatorics, Computability and Logic, Proc. DMTCS’01, Springer, London, 2001, pp. 125–136. MR 1934826 |
Reference:
|
[9] T. Kovář: A general theory of dually residuated lattice ordered monoids.Thesis, Palacký Univ. Olomouc, 1996. |
Reference:
|
[10] J. Kühr: Pseudo $BL$-algebras and $DR\ell $-monoids.Math. Bohem. 128 (2003), 199–208. Zbl 1024.06005, MR 1995573 |
Reference:
|
[11] J. Kühr: Ideals of noncommutative $DR\ell $-monoids.(to appear). MR 2121658 |
Reference:
|
[12] J. Kühr: Prime ideals and polars in $DR\ell $-monoids and pseudo $BL$-algebras.Math. Slovaca 53 (2003), 233–246. MR 2025020 |
Reference:
|
[13] J. Kühr: Representable dually residuated lattice ordered monoids.(to appear). MR 2070377 |
Reference:
|
[14] J. Rachůnek: $DR\ell $-semigroups and $MV$-algebras.Czechoslovak Math. J. 48 (1998), 365–372. 10.1023/A:1022801907138 |
Reference:
|
[15] J. Rachůnek: $MV$-algebras are categorically equivalent to a class of $DR\ell $-semigroups.Math. Bohem. 123 (1998), 437–441. MR 1667115 |
Reference:
|
[16] J. Rachůnek: A duality between algebras of basic logic and bounded representable $DR\ell $-monoids.Math. Bohem. 126 (2001), 561–569. MR 1970259 |
Reference:
|
[17] J. Rachůnek: A non-commutative generalization of $MV$-algebras.Czechoslovak Math. J. 52 (2002), 255–273. Zbl 1012.06012, MR 1905434, 10.1023/A:1021766309509 |
Reference:
|
[18] J. Rachůnek, D. Šalounová: Direct decompositions of dually residuated lattice ordered monoids.(to appear). MR 2118156 |
Reference:
|
[19] D. Šalounová: Lex-ideals of $DR\ell $-monoids and algebras.Math. Slovaca 53 (2003), 321–330. MR 2025465 |
Reference:
|
[20] K. L. N. Swamy: Dually residuated lattice ordered semigroups.Math. Ann. 159 (1965), 105–114. Zbl 0138.02104, MR 0183797, 10.1007/BF01360284 |
. |