Previous |  Up |  Next

Article

Title: Lexicographic extensions of dually residuated lattice ordered monoids (English)
Author: Rachůnek, Jiří
Author: Šalounová, Dana
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 129
Issue: 3
Year: 2004
Pages: 283-295
Summary lang: English
.
Category: math
.
Summary: Dually residuated lattice ordered monoids ($DR\ell $-monoids) are common generalizations of, e.g., lattice ordered groups, Brouwerian algebras and algebras of logics behind fuzzy reasonings ($MV$-algebras, $BL$-algebras) and their non-commutative variants ($GMV$-algebras, pseudo $BL$-algebras). In the paper, lex-extensions and lex-ideals of $DR\ell $-monoids (which need not be commutative or bounded) satisfying a certain natural condition are studied. (English)
Keyword: $DR\ell $-monoid
Keyword: ideal
Keyword: lex-extension
Keyword: lex-ideal
Keyword: algebras of fuzzy logics
MSC: 03G10
MSC: 03G25
MSC: 06D35
MSC: 06F05
MSC: 06F15
idZBL: Zbl 1080.06024
idMR: MR2092714
DOI: 10.21136/MB.2004.134151
.
Date available: 2009-09-24T22:15:12Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134151
.
Reference: [1] A. Bigard, K. Keimel, S. Wolfenstein: Groupes et Anneaux Réticulés.Springer, Berlin, 1977. MR 0552653
Reference: [2] R. L. O. Cignoli, I. M. L. D’Ottaviano, D. Mundici: Foundations of Many-Valued Reasoning.Kluwer Acad. Publ., Dordrecht, 2000. MR 1786097
Reference: [3] P. Conrad: Lex-subgroups of lattice ordered groups.Czechoslovak Math. J. 18 (1968), 86–103. Zbl 0155.05902, MR 0225697
Reference: [4] A. Di Nola, G. Georgescu, A. Iorgulescu: Pseudo $BL$-algebras: Part I.Multiple-Valued Logic 8 (2002), 673–714. MR 1948853
Reference: [5] A. M. W. Glass: Partially Ordered Groups.World Scientific, Singapore, 1999. Zbl 0933.06010, MR 1791008
Reference: [6] G. Georgescu, A. Iorgulescu: Pseudo $MV$-algebras.Multiple Valued Logic 6 (2001), 95–135. MR 1817439
Reference: [7] P. Hájek: Metamathematics of Fuzzy Logic.Kluwer, Amsterdam, 1998. MR 1900263
Reference: [8] D. Hort, J. Rachůnek: Lex ideals of generalized $MV$-algebras.C. S. Calude, M. J. Dinneen, S. Sburlan (eds.), Combinatorics, Computability and Logic, Proc. DMTCS’01, Springer, London, 2001, pp. 125–136. MR 1934826
Reference: [9] T. Kovář: A general theory of dually residuated lattice ordered monoids.Thesis, Palacký Univ. Olomouc, 1996.
Reference: [10] J. Kühr: Pseudo $BL$-algebras and $DR\ell $-monoids.Math. Bohem. 128 (2003), 199–208. Zbl 1024.06005, MR 1995573
Reference: [11] J. Kühr: Ideals of noncommutative $DR\ell $-monoids.(to appear). MR 2121658
Reference: [12] J. Kühr: Prime ideals and polars in $DR\ell $-monoids and pseudo $BL$-algebras.Math. Slovaca 53 (2003), 233–246. MR 2025020
Reference: [13] J. Kühr: Representable dually residuated lattice ordered monoids.(to appear). MR 2070377
Reference: [14] J. Rachůnek: $DR\ell $-semigroups and $MV$-algebras.Czechoslovak Math. J. 48 (1998), 365–372. 10.1023/A:1022801907138
Reference: [15] J. Rachůnek: $MV$-algebras are categorically equivalent to a class of $DR\ell $-semigroups.Math. Bohem. 123 (1998), 437–441. MR 1667115
Reference: [16] J. Rachůnek: A duality between algebras of basic logic and bounded representable $DR\ell $-monoids.Math. Bohem. 126 (2001), 561–569. MR 1970259
Reference: [17] J. Rachůnek: A non-commutative generalization of $MV$-algebras.Czechoslovak Math. J. 52 (2002), 255–273. Zbl 1012.06012, MR 1905434, 10.1023/A:1021766309509
Reference: [18] J. Rachůnek, D. Šalounová: Direct decompositions of dually residuated lattice ordered monoids.(to appear). MR 2118156
Reference: [19] D. Šalounová: Lex-ideals of $DR\ell $-monoids and algebras.Math. Slovaca 53 (2003), 321–330. MR 2025465
Reference: [20] K. L. N. Swamy: Dually residuated lattice ordered semigroups.Math. Ann. 159 (1965), 105–114. Zbl 0138.02104, MR 0183797, 10.1007/BF01360284
.

Files

Files Size Format View
MathBohem_129-2004-3_5.pdf 335.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo