Previous |  Up |  Next

Article

Title: Maximal regularity for abstract parabolic problems with inhomogeneous boundary data in $L_p$-spaces (English)
Author: Prüss, Jan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 127
Issue: 2
Year: 2002
Pages: 311-327
Summary lang: English
.
Category: math
.
Summary: Several abstract model problems of elliptic and parabolic type with inhomogeneous initial and boundary data are discussed. By means of a variant of the Dore-Venni theorem, real and complex interpolation, and trace theorems, optimal $L_p$-regularity is shown. By means of this purely operator theoretic approach, classical results on $L_p$-regularity of the diffusion equation with inhomogeneous Dirichlet or Neumann or Robin condition are recovered. An application to a dynamic boundary value problem with surface diffusion for the diffusion equation is included. (English)
Keyword: maximal regularity
Keyword: sectorial operators
Keyword: interpolation
Keyword: trace theorems
Keyword: elliptic and parabolic initial-boundary value problems
Keyword: dynamic boundary conditions
MSC: 34G10
MSC: 35G10
MSC: 35K20
MSC: 35K90
MSC: 45K05
MSC: 47D06
idZBL: Zbl 1010.35064
idMR: MR1981536
DOI: 10.21136/MB.2002.134160
.
Date available: 2012-10-05T13:05:19Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134160
.
Reference: [1] G. Da Prato, P. Grisvard: Sommes d’opérateurs linéaires et équations différentielles opérationelles.J. Math. Pures Appl. 54 (1975), 305–387. MR 0442749
Reference: [2] G. Dore, A. Venni: On the closedness of the sum of two closed operators.Math. Z. 196 (1987), 189–201. MR 0910825, 10.1007/BF01163654
Reference: [3] J. Escher, J. Prüss, G. Simonett: Analytic solutions of the Stefan problem with Gibbs-Thomson correction.(to appear).
Reference: [4] J. Escher, J. Prüss, G. Simonett: Analytic solutions of the free boundary value problem for the Navier-Stokes equation.(to appear).
Reference: [5] P. Grisvard: Spaci di trace e applicazioni.Rend. Math. 5 (1972), 657–729. MR 0341059
Reference: [6] M. Hieber, J. Prüss: Maximal Regularity of Parabolic Problems.Monograph in preparation, 2001.
Reference: [7] N. Kalton, L. Weis: The $H^\infty $-calculus and sums of closed operators.Math. Ann (to appear). MR 1866491
Reference: [8] H. Komatsu: Fractional powers of operators.Pacific J. Math. 1 (1966), 285–346. Zbl 0154.16104, MR 0201985
Reference: [9] O. A. Ladyženskaya, V. A. Solonnikov, N. N. Ural’ceva: Linear and Quasilinear Equations of Parabolic Type, vol. 23.Transl. Math. Monographs. Amer. Math. Soc., 1968. MR 0241822
Reference: [10] J. Prüss, H. Sohr: On operators with bounded imaginary powers in Banach spaces.Math. Z. 203 (1990), 429–452. MR 1038710, 10.1007/BF02570748
Reference: [11] P. E. Sobolevskii: Fractional powers of coercively positive sums of operators.Soviet Math. Dokl. 16 (1975), 1638–1641. Zbl 0333.47010, MR 0482314
.

Files

Files Size Format View
MathBohem_127-2002-2_19.pdf 388.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo