Previous |  Up |  Next

Article

Title: A priori bounds for solutions of parabolic problems and applications (English)
Author: Quittner, Pavol
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 127
Issue: 2
Year: 2002
Pages: 329-341
Summary lang: English
.
Category: math
.
Summary: We review some recent results concerning a priori bounds for solutions of superlinear parabolic problems and their applications. (English)
Keyword: a priori estimate
Keyword: blow-up rate
Keyword: periodic solution
Keyword: multiplicity
MSC: 35B45
MSC: 35J65
MSC: 35K20
MSC: 35K55
MSC: 35K60
idZBL: Zbl 1010.35017
idMR: MR1981537
DOI: 10.21136/MB.2002.134174
.
Date available: 2012-10-05T13:06:51Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134174
.
Reference: [1] H. Amann, P. Quittner: Elliptic boundary value problems involving measures: existence, regularity, and multiplicity.Adv. Differ. Equ. 3 (1998), 753–813. MR 1659273
Reference: [2] P. Baras, L. Cohen: Complete blow-up after $T_{\max }$ for the solution of a semilinear heat equation.J. Funct. Anal. 71 (1987), 142–174. MR 0879705, 10.1016/0022-1236(87)90020-6
Reference: [3] P. Baras, M. Pierre: Critère d’existence de solutions positives pour des équations semi-linéaires non monotones.Analyse Non Linéaire, Ann. Inst. H. Poincaré 2 (1985), 185–212. Zbl 0599.35073, MR 0797270, 10.1016/S0294-1449(16)30402-4
Reference: [4] M.-F. Bidaut-Véron: Initial blow-up for the solutions of a semilinear parabolic equation with source term.Equations aux dérivées partielles et applications, articles dédiés à Jacques-Louis Lions, Gauthier-Villars, Paris, 1998, pp. 189–198. MR 1648222
Reference: [5] H. Brézis, R. E. L. Turner: On a class of superlinear elliptic problems.Commun. Partial Differ. Equations 2 (1977), 601–614. MR 0509489, 10.1080/03605307708820041
Reference: [6] T. Cazenave, P.-L. Lions: Solutions globales d’équations de la chaleur semi linéaires.Commun. Partial Differ. Equations 9 (1984), 955–978. MR 0755928, 10.1080/03605308408820353
Reference: [7] M. Chipot, M. Fila, P. Quittner: Stationary solutions, blow up and convergence to stationary solutions for semilinear parabolic equations with nonlinear boundary conditions.Acta Math. Univ. Comen. 60 (1991), 35–103. MR 1120596
Reference: [8] M. J. Esteban: On periodic solutions of superlinear parabolic problems.Trans. Amer. Math. Soc. 293 (1986), 171–189. Zbl 0619.35058, MR 0814919, 10.1090/S0002-9947-1986-0814919-8
Reference: [9] M. J. Esteban: A remark on the existence of positive periodic solutions of superlinear parabolic problems.Proc. Amer. Math. Soc. 102 (1988), 131–136. Zbl 0653.35039, MR 0915730, 10.1090/S0002-9939-1988-0915730-7
Reference: [10] C. Fermanian Kammerer, F. Merle, H. Zaag: Stability of the blow-up profile of non-linear heat equations from the dynamical system point of view.Math. Ann. 317 (2000), 347–387. MR 1764243, 10.1007/s002080000096
Reference: [11] D. G. de Figueiredo, P.-L. Lions, R. D. Nussbaum: A priori estimates and existence of positive solutions of semilinear elliptic equations.J. Math. Pures Appl. 61 (1982), 41–63. MR 0664341
Reference: [12] M. Fila: Boundedness of global solutions of nonlinear parabolic problems.Proc. of the 4th European Conf. on Elliptic and Parabolic Problems, Rolduc 2001, to appear.
Reference: [13] M. Fila, P. Poláčik: Global solutions of a semilinear parabolic equation.Adv. Differ. Equ. 4 (1999), 163–196. MR 1674359
Reference: [14] M. Fila, P. Souplet, F. Weissler: Linear and nonlinear heat equations in $L^q_\delta $ spaces and universal bounds for global solutions.Math. Ann. 320 (2001), 87–113. MR 1835063, 10.1007/PL00004471
Reference: [15] S. Filippas, M. A. Herrero, J. J. L. Velázquez: Fast blow-up mechanism for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity.R. Soc. Lond. Proc. Ser. A 456 (2000), 2957–2982. MR 1843848, 10.1098/rspa.2000.0648
Reference: [16] V. Galaktionov, J. L. Vázquez: Continuation of blow-up solutions of nonlinear heat equations in several space dimensions.Commun. Pure Applied Math. 50 (1997), 1–67. 10.1002/(SICI)1097-0312(199701)50:1<1::AID-CPA1>3.0.CO;2-H
Reference: [17] B. Gidas, J. Spruck: A priori bounds for positive solutions of nonlinear elliptic equations.Commun. Partial Differ. Equations 6 (1981), 883–901. MR 0619749, 10.1080/03605308108820196
Reference: [18] Y. Giga: A bound for global solutions of semilinear heat equations.Commun. Math. Phys. 103 (1986), 415–421. Zbl 0595.35057, MR 0832917, 10.1007/BF01211756
Reference: [19] Y. Giga, R. V. Kohn: Characterizing blowup using similarity variables.Indiana Univ. Math. J. 36 (1987), 1–40. MR 0876989, 10.1512/iumj.1987.36.36001
Reference: [20] M. A. Herrero, J. J. L. Velázquez: Explosion de solutions d’équations paraboliques semilinéaires supercritiques.C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 141–145. MR 1288393
Reference: [21] M. A. Herrero, J. J. L. Velázquez: A blow up result for semilinear heat equations in the supercritical case.Preprint.
Reference: [22] J. Húska: Periodic solutions in superlinear parabolic problems.Acta Math. Univ. Comen (to appear). MR 1943012
Reference: [23] H. A. Levine: Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+F(u)$.Arch. Rational Mech. Anal. 51 (1973), 371–386. MR 0348216, 10.1007/BF00263041
Reference: [24] J. Matos, Ph. Souplet: Universal blow-up estimates and decay rates for a semilinear heat equation.Preprint.
Reference: [25] W.-M. Ni, P. E. Sacks, J. Tavantzis: On the asymptotic behavior of solutions of certain quasilinear parabolic equations.J. Differ. Equations 54 (1984), 97–120. MR 0756548, 10.1016/0022-0396(84)90145-1
Reference: [26] R. D. Nussbaum: Positive solutions of nonlinear elliptic boundary value problems.J. Math. Anal. Appl. 51 (1975), 461–482. Zbl 0304.35047, MR 0382850, 10.1016/0022-247X(75)90133-X
Reference: [27] S. I. Pohozaev: Eigenfunctions of the equation $\Delta u+\lambda f(u)=0$.Soviet Math. Dokl. 5 (1965), 1408–1411. MR 0192184
Reference: [28] P. Quittner: A priori bounds for global solutions of a semilinear parabolic problem.Acta Math. Univ. Comen. 68 (1999), 195–203. Zbl 0940.35112, MR 1757788
Reference: [29] P. Quittner: A priori estimates of global solutions and multiple equilibria of a superlinear parabolic problem involving measure.Electronic J. Differ. Equations 2001 (2001), no. 29, 1–17. MR 1836797
Reference: [30] P. Quittner: Universal bound for global positive solutions of a superlinear parabolic problem.Math. Ann. 320 (2001), 299–305. Zbl 0981.35010, MR 1839765, 10.1007/PL00004475
Reference: [31] P. Quittner: Continuity of the blow-up time and a priori bounds for solutions in superlinear parabolic problems.Houston J. Math (to appear). Zbl 1034.35013, MR 1998164
Reference: [32] P. Quittner: Multiple equilibria, periodic solutions and a priori bounds for solutions in superlinear parabolic problems.NoDEA, Nonlinear Differ. Equations Appl (to appear). Zbl 1058.35120, MR 2210288
Reference: [33] P. Quittner, Ph. Souplet: A priori estimates of global solutions of superlinear parabolic problems without variational structure.Discrete Contin. Dyn. Systems (to appear). MR 1974428
Reference: [34] P. Quittner, Ph. Souplet: Bounds of solutions of parabolic problems with nonlinear boundary conditions.In preparation.
Reference: [35] P. Quittner, Ph. Souplet, M. Winkler: Initial blow-up rates and universal bounds for nonlinear heat equations.Preprint. MR 2028111
Reference: [36] R. E. L. Turner: A priori bounds for positive solutions of nonlinear elliptic equations in two variables.Duke Math. J. 41 (1974), 759–774. Zbl 0294.35033, MR 0364859
Reference: [37] H. Zaag: A remark on the energy blow-up behavior for nonlinear heat equations.Duke Math. J. 103 (2000), 545–556. Zbl 0971.35042, MR 1763658, 10.1215/S0012-7094-00-10336-5
.

Files

Files Size Format View
MathBohem_127-2002-2_20.pdf 387.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo