Previous |  Up |  Next

Article

Title: On discontinuous Galerkin methods for nonlinear convection-diffusion problems and compressible flow (English)
Author: Dolejší, V.
Author: Feistauer, M.
Author: Schwab, C.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 127
Issue: 2
Year: 2002
Pages: 163-179
Summary lang: English
.
Category: math
.
Summary: The paper is concerned with the discontinuous Galerkin finite element method for the numerical solution of nonlinear conservation laws and nonlinear convection-diffusion problems with emphasis on applications to the simulation of compressible flows. We discuss two versions of this method: (a) Finite volume discontinuous Galerkin method, which is a generalization of the combined finite volume—finite element method. Its advantage is the use of only one mesh (in contrast to the combined finite volume—finite element schemes). However, it is of the first order only. (b) Pure discontinuous Galerkin finite element method of higher order combined with a technique avoiding spurious oscillations in the vicinity of shock waves. (English)
Keyword: discontinuous Galerkin finite element method
Keyword: numerical flux
Keyword: conservation laws
Keyword: convection-diffusion problems
Keyword: limiting of order of accuracy
Keyword: numerical solution of compressible Euler equations
MSC: 65M15
MSC: 65M60
MSC: 76M10
MSC: 76M12
MSC: 76N15
idZBL: Zbl 1074.65522
idMR: MR1981522
DOI: 10.21136/MB.2002.134171
.
Date available: 2012-10-05T12:51:30Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134171
.
Reference: [1] Ph. Angot, V. Dolejší, M. Feistauer, J. Felcman: Analysis of a combined barycentric finite volume—nonconforming finite element method for nonlinear convection-diffusion problems.Appl. Math. 43 (1998), 263–310. MR 1627989, 10.1023/A:1023217905340
Reference: [2] F. Bassi, S. Rebay: A high order discontinuous Galerkin method for the numerical solution of the compressible Navier-Stokes equations.J. Comput. Phys. 131 (1997), 267–279. MR 1433934, 10.1006/jcph.1996.5572
Reference: [3] B. Cockburn: Discontinuous Galerkin methods for convection dominated problems.High-Order Methods for Computational Physics, T. J. Barth, H. Deconinck (eds.), Lecture Notes in Computational Science and Engineering 9, Springer, Berlin, 1999, pp. 69–224. Zbl 0937.76049, MR 1712278
Reference: [4] B. Cockburn, G. E. Karniadakis, C.-W. Shu: Discontinuous Galerkin Methods.Lect. Notes Comput. Sci. Eng. 11., Springer, Berlin, 2000. MR 1842160
Reference: [5] V. Dolejší: Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes.Comput. Vis. Sci. 1 (1998), 165–178. 10.1007/s007910050015
Reference: [6] V. Dolejší, M. Feistauer, C. Schwab: A finite volume discontinuous Galerkin scheme for nonlinear convection-diffusion problems.Calcolo. Preprint, Forschungsinstitut für Mathematik ETH Zürich, Januar 2001 (to appear). MR 1901200
Reference: [7] V. Dolejší, M. Feistauer, C. Schwab: On some aspects of the discontinuous Galerkin finite element method for conservation laws.Mathematics and Computers in Simulation. The Preprint Series of the School of Mathematics, Charles University Prague, No. MATH-KNM-2001/5, 2001 (to appear). MR 1984135
Reference: [8] M. Feistauer: Mathematical Methods in Fluid Dynamics.Longman Scientific & Technical, Harlow, 1993. Zbl 0819.76001
Reference: [9] M. Feistauer: Numerical methods for compressible flow.Mathematical Fluid Mechanics. Recent Results and Open Questions, J. Neustupa, P. Penel (eds.), Birkhäuser, Basel, 2001, pp. 105–142. Zbl 1036.76035, MR 1865051
Reference: [10] M. Feistauer, J. Felcman: Theory and applications of numerical schemes for nonlinear convection-diffusion problems and compressible Navier-Stokes equations.The Mathematics of Finite Elements and Applications, J. R. Whiteman (ed.), Highlights, 1996, Wiley, Chichester, 1997, pp. 175–194.
Reference: [11] M. Feistauer, J. Felcman, V. Dolejší: Numerical solution of compressible flow through cascades of profiles.Z. Angew. Math. Mech. 76 (1996), 297–300.
Reference: [12] M. Feistauer, J. Felcman, M. Lukáčová: On the convergence of a combined finite volume—finite element method for nonlinear convection-diffusion problems.Numer. Methods Partial Differ. Equations 13 (1997), 163–190. MR 1436613, 10.1002/(SICI)1098-2426(199703)13:2<163::AID-NUM3>3.0.CO;2-N
Reference: [13] M. Feistauer, J. Felcman, M. Lukáčová, G. Warnecke: Error estimates for a combined finite volume—finite element method for nonlinear convection-diffusion problems.SIAM J. Numer. Anal. 36 (1999), 1528–1548. MR 1706727, 10.1137/S0036142997314695
Reference: [14] M. Feistauer, J. Slavík, P. Stupka: On the convergence of a combined finite volume—finite element method for nonlinear convection-diffusion problems.Explicit schemes. Numer. Methods Partial Differ. Equations 15 (1999), 215–235. MR 1674294, 10.1002/(SICI)1098-2426(199903)15:2<215::AID-NUM6>3.0.CO;2-1
Reference: [15] J. Felcman: On a 3D adaptation for compressible flow.Proceedings of the Conf. Finite Element Methods for Three-Dimensional Problems, Jyväskylä, June 27–July 1, 2000 (to appear). Zbl 0996.76060
Reference: [16] J. Fořt, J. Halama, A. Jirásek, M. Kladrubský, K. Kozel: Numerical solution of several 2D and 3D internal and external flow problems.Numerical Modelling in Continuum Mechanics, M. Feistauer, R. Rannacher, K. Kozel (eds.), Matfyzpress, Praha, 1997, pp. 283–291.
Reference: [17] R. Hartmann, P. Houston: Adaptive discontinuous Galerkin finite element methods for nonlinear conservation laws.Preprint 2001–20, Mai 2001, SFB 359, Universität Heidelberg.
Reference: [18] J. T. Oden, I. Babuška, C. E. Baumann: A discontinuous $hp$ finite element method for diffusion problems.J. Comput. Phys. 146 (1998), 491–519. MR 1654911, 10.1006/jcph.1998.6032
Reference: [19] S. P. Spekreijse: Multigrid Solution of the Steady Euler Equations.Centrum voor Wiskunde en Informatica, Amsterdam, 1987. MR 0942891
.

Files

Files Size Format View
MathBohem_127-2002-2_5.pdf 1.536Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo