Previous |  Up |  Next

Article

Title: Qualitative theory of half-linear second order differential equations (English)
Author: Došlý, Ondřej
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 127
Issue: 2
Year: 2002
Pages: 181-195
Summary lang: English
.
Category: math
.
Summary: Some recent results concerning properties of solutions of the half-linear second order differential equation \[ (r(t)\Phi (x^{\prime }))^{\prime }+c(t)\Phi (x)=0,\quad \Phi (x):=|x|^{p-2}x,\quad p>1, \qquad \mathrm{{(*)}}\] are presented. A particular attention is paid to the oscillation theory of $(*)$. Related problems are also discussed. (English)
Keyword: half-linear equation
Keyword: Picone’s identity
Keyword: scalar $p$-Laplacian
Keyword: variational method
Keyword: Riccati technique
Keyword: principal solution
MSC: 34C10
MSC: 34C11
MSC: 34D05
idZBL: Zbl 1016.34030
idMR: MR1981523
DOI: 10.21136/MB.2002.134170
.
Date available: 2012-10-05T12:53:06Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134170
.
Reference: [1] R. P. Agarwal: Difference Equations and Inequalities, Theory, Methods and Applications.Second Edition, M. Dekker, New York, 2000. Zbl 0952.39001, MR 1740241
Reference: [2] W. Allegretto, Y. X. Huang: A Picone’s identity for the $p$-Laplacian and applications.Nonlin. Anal. 32 (1998), 819–830. MR 1618334, 10.1016/S0362-546X(97)00530-0
Reference: [3] W. Allegretto, Y. X. Huang: Principal eigenvalues and Sturm comparison via Picone’s identity.J. Differ. Equations 156 (1999), 427–438. MR 1705379, 10.1006/jdeq.1998.3596
Reference: [4] I. Bihari: On the second order half-linear differential equation.Studia Sci. Math. Hungar. 3 (1968), 411–437. Zbl 0167.37403, MR 0267190
Reference: [5] I. Bihari: An oscillation theorem concerning the half-linear differential equation of the second order.Publ. Math. Inst. Hungar. Acad. Sci. Ser. A 8 (1963), 275–279. MR 0171959
Reference: [6] O. Borůvka: Lineare Differentialtransformationen 2.Ordnung, Deutscher Verlag der Wissenschaften, Berlin, 1961.
Reference: [7] M. Cecchi, Z. Došlá, M. Marini: On nonoscillatory solutions of differential equations with $p$-Laplacian.Advances Math. Sci. Appl. 11 (2001), 419–436. MR 1842385
Reference: [8] M. Cecchi, Z. Došlá, M. Marini: Minimal sets for quasilinear differential equations.Submitted.
Reference: [9] M. Cecchi, M. Marini, G. Villari: Integral criteria for a classification of solutions of linear differential equations.J. Differ. Equations 99 (1992), 381–399. MR 1184060, 10.1016/0022-0396(92)90027-K
Reference: [10] M. Cuesta, D. de Figuiredo, J.-P. Gossez: The beginning of the Fučík spectrum for the $p$-Laplacian.J. Differ. Equations 159 (1999), 212–238. MR 1726923, 10.1006/jdeq.1999.3645
Reference: [11] J. I. Díaz: Nonlinear Partial Differential Equations and Free Boundaries. Vol I.Elliptic Equations, Pitman, London, 1985. MR 0853732
Reference: [12] O. Došlý: Oscillation criteria for half-linear second order differential equations.Hiroshima J. Math. 28 (1998), 507–521. MR 1657543, 10.32917/hmj/1206126680
Reference: [13] O. Došlý: A remark on conjugacy of half-linear second order differential equations.Math. Slovaca 50 (2000), 67–79. MR 1764346
Reference: [14] O. Došlý: Methods of oscillation theory of half-linear second order differential equations.Czechoslovak Math. J. 50 (2000), 657–671. MR 1777486, 10.1023/A:1022854131381
Reference: [15] O. Došlý: Half-linear oscillation theory.Studies Univ. Žilina, Math.-Phys. Ser. 13 (2001), 65–73. Zbl 1040.34040, MR 1874005
Reference: [16] O. Došlý, Á. Elbert: Integral characterization of principal solution of half-linear differential equations.Studia Sci. Math. Hungar. 36 (2000), 455–469. MR 1798750
Reference: [17] O. Došlý, A. Lomtatidze: Oscillation and nonoscillation criteria for half-linear second order differential equations.Submitted.
Reference: [18] O. Došlý, R. Mařík,: Nonexistence of positive solutions of PDE’s with $p$-Laplacian.Acta Math. Hungar. 90 (2001), 89–107. MR 1910321, 10.1023/A:1006739909182
Reference: [19] O. Došlý, J. Řezníčková: Regular half-linear second order differential equations.Submitted.
Reference: [20] P. Drábek: Fredholm alternative for the $p$-Laplacian: yes or no? Function Spaces, Differential Operators and Nonlinear Analysis.Proceedings of the conference FSDONA-99, Syöte, Finland, June 10–16, 1999, Prague, Mustonen, Vesa at al (ed.), Mathematical Institute of the Academy of Sciences of the Czech Republic, 2000, pp. 57–64. MR 1755297
Reference: [21] Á. Elbert: A half-linear second order differential equation.Colloq. Math. Soc. János Bolyai 30 (1979), 158–180.
Reference: [22] Á. Elbert: The Wronskian and the half-linear differential equations.Studia Sci. Math. Hungar. 15 (1980), 101–105. Zbl 0522.34034, MR 0681431
Reference: [23] Á. Elbert: Oscillation and nonoscillation theorems for some non-linear ordinary differential equations.Lectures Notes Math. 964 (1982), 187–212. 10.1007/BFb0064999
Reference: [24] Á. Elbert: Asymptotic behaviour of autonomous half-linear differential systems on the plane.Studia Sci. Math. Hungar. 19 (1984), 447–464. Zbl 0629.34066, MR 0874513
Reference: [25] Á. Elbert, T. Kusano: Principal solutions of nonoscillatory half-linear differential equations.Advances Math. Sci. Appl. 18 (1998), 745–759.
Reference: [26] R. Emden: Gaskugeln, Anwendungen der mechanischen Warmentheorie auf Kosmologie und metheorologische Probleme.Leibzig, 1907.
Reference: [27] R. H. Fowler: The solutions of Emden’s and similar differential equations.Monthly Notices Roy. Astronom. Soc. 91 (1930), 63–91. 10.1093/mnras/91.1.63
Reference: [28] P. Hartman: Ordinary Differential Equations.John Wiley & Sons New York, 1964. Zbl 0125.32102, MR 0171038
Reference: [29] J. Jaroš, T. Kusano: A Picone type identity for half-linear differential equations.Acta Math. Univ. Comen. 68 (1999), 137–151. MR 1711081
Reference: [30] J. Jaroš, T. Kusano, N. Yosida: A Picone-type identity and Sturmian comparison and oscillation theorems for a class of half-linear partial differential equations of the second order.Nonlin. Anal., Theory Methods Appl. 40 (2000), 381–395. MR 1768900, 10.1016/S0362-546X(00)85023-3
Reference: [31] W. G. Kelley, A. Peterson: Difference Equations: An Introduction with Applications.Acad. Press, San Diego, 1991. MR 1142573
Reference: [32] T. Kusano, Y. Naito: Oscillation and nonoscillation criteria for second order quasilinear differential equations.Acta. Math. Hungar. 76 (1997), 81–99. MR 1459772, 10.1007/BF02907054
Reference: [33] T. Kusano, Y. Naito, A. Ogata: Strong oscillation and nonoscillation of quasilinear differential equations of second order.Diff. Equations Dyn. Syst. 2 (1994), 1–10. MR 1386034
Reference: [34] H. J. Li, Ch. Ch. Yeh: Oscillations of half-linear second order differential equations.Hiroshima Math. J. 25 (1995), 585–594. MR 1364076, 10.32917/hmj/1206127634
Reference: [35] M. Marini, P. Zezza: On the asymptotic behavior of the solutions of second order linear differential equations.J. Differ. Equations 28 (1978), 1–17. MR 0466748, 10.1016/0022-0396(78)90075-X
Reference: [36] J. D. Mirzov: On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems.J. Math. Anal. Appl. 53 (1976), 418–425. Zbl 0327.34027, MR 0402184, 10.1016/0022-247X(76)90120-7
Reference: [37] J. D. Mirzov: Principal and nonprincipal solutions of a nonoscillatory system.Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 31 (1988), 100–117. MR 1001343
Reference: [38] P. Řehák: Oscillatory properties of second order half-linear difference equations.Czechoslovak Math. J. 51 (2001), 303–321. Zbl 0982.39004, MR 1844312, 10.1023/A:1013790713905
Reference: [39] G. Sansone: Equazioni diferenziali nel campo reale I, II.Zanichelli, Bologna, 1949. MR 0030663
Reference: [40] L. H. Thomas: The calculation of atomic fields.Proc. Cambridge Phil. Soc. 23 (1927), 542–548.
.

Files

Files Size Format View
MathBohem_127-2002-2_6.pdf 391.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo