Title:
|
Variable exponent Sobolev spaces with zero boundary values (English) |
Author:
|
Harjulehto, Petteri |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
132 |
Issue:
|
2 |
Year:
|
2007 |
Pages:
|
125-136 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study different definitions of the first order variable exponent Sobolev space with zero boundary values in an open subset of ${\mathbb{R}^n}$. (English) |
Keyword:
|
variable exponent |
Keyword:
|
Sobolev space |
Keyword:
|
zero boundary value |
MSC:
|
46E35 |
idZBL:
|
Zbl 1174.46322 |
idMR:
|
MR2338802 |
DOI:
|
10.21136/MB.2007.134186 |
. |
Date available:
|
2009-09-24T22:30:17Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134186 |
. |
Reference:
|
[1] E. Acerbi, G. Mingione: Regularity results for a class of functionals with non-standard growth.Arch. Ration. Mech. Anal. 156 (2001), 121–140. MR 1814973, 10.1007/s002050100117 |
Reference:
|
[2] D. R. Adams, L. I. Hedberg: Function Spaces and Potential Theory.Springer, Berlin, 1996. MR 1411441 |
Reference:
|
[3] D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer: The maximal operator on variable $L^p$ spaces.Ann. Acad. Sci. Fenn. 28 (2003), 223–238. MR 1976842 |
Reference:
|
[4] L. Diening: Maximal operator on generalized Lebesgue spaces ${L}^{p(\cdot )}$.Math. Inequal. Appl. 7 (2004), 245–254. MR 2057643 |
Reference:
|
[5] L. Diening, M. Růžička: Calderón-Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot )}$ and problems related to fluid dynamics.J. Reine Ang. Math. 563 (2003), 197–220. MR 2009242 |
Reference:
|
[6] D. E. Edmunds, J. Rákosník: Density of smooth functions in $W^{k,p(x)}(\Omega )$.Proc. Roy. Soc. London Ser. A 437 (1992), 229–236. MR 1177754, 10.1098/rspa.1992.0059 |
Reference:
|
[7] M. Eleutera: Hölder continuity results for a class of functionals with non standard growth.Boll. Unione Mat. Ital. 7-B (2004), 129–157. MR 2044264 |
Reference:
|
[8] X. Fan, D. Zhao: On the spaces ${L}^{p(x)}(\Omega )$ and ${W}^{m,p(x)}(\Omega )$.J. Math. Anal. Appl. 263 (2001), 424–446. MR 1866056 |
Reference:
|
[9] P. Harjulehto, P. Hästö: Lebesgue points in variable exponent spaces.Ann. Acad. Sci. Fenn. Math. 29 (2004), 295–306. MR 2097234 |
Reference:
|
[10] P. Harjulehto, P. Hästö, M. Koskenoja, S. Varonen: Sobolev capacity on the space $W^{1,p(\cdot )}({\mathbb{R}^n})$.J. Funct. Spaces Appl. 1 (2003), 17–33. MR 2011498 |
Reference:
|
[11] P. Harjulehto, P. Hästö, M. Koskenoja, S. Varonen: The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values.Potential Anal. 25 (2006), 205–222. MR 2255345, 10.1007/s11118-006-9023-3 |
Reference:
|
[12] P. Hästö: On the density of continuous functions in variable exponent Sobolev space.Rev. Mat. Iberoamericana 23 (2007), 215–237. Zbl 1144.46031, MR 2351132 |
Reference:
|
[13] P. Hästö: Counter examples of regularity in variable exponent Sobolev spaces.The $p$-Harmonic Equation and Recent Advances in Analysis (Manhattan, KS, 2004), 133–143, Contemp. Math. 367, Amer. Math. Soc., Providence, RI, 2005. Zbl 1084.46025, MR 2126704 |
Reference:
|
[14] T. Kilpeläinen: A remark on the uniqueness of quasicontinuous functions.Ann. Acad. Sci. Fenn. Math. 23 (1998), 261–262. |
Reference:
|
[15] T. Kilpeläinen, J. Kinnunen, O. Martio: Sobolev spaces with zero boundary values on metric spaces.Potential Anal. 12 (2000), 233–247. MR 1752853, 10.1023/A:1008601220456 |
Reference:
|
[16] V. Kokilasvili, S. Samko: Maximal and fractional operators in weighted $L^{p(x)}$ spaces.Rev. Mat. Iberoamericana 20 (2004), 493–515. MR 2073129 |
Reference:
|
[17] O. Kováčik, J. Rákosník: On spaces $L^{p(x)}$ and $W^{1,p(x)}$.Czech. Math. J. 41 (1991), 592–618. |
Reference:
|
[18] A. K. Lerner: Some remarks on the Hardy-Littlewood maximal function on variable $L^p$ spaces.Math. Z. 251 (2005), 509–521. MR 2190341, 10.1007/s00209-005-0818-5 |
Reference:
|
[19] E. McShane: Extension of range of functions.Bull. Amer. Math. Soc. 40 (1934), 837–842. Zbl 0010.34606, MR 1562984, 10.1090/S0002-9904-1934-05978-0 |
Reference:
|
[20] J. Musielak: Orlicz Spaces and Modular Spaces.Lecture Notes in Mathematics 1034, Springer, Berlin, 1983. Zbl 0557.46020, MR 0724434 |
Reference:
|
[21] A. Nekvinda: Hardy-Littlewood maximal operator on $L^{p(x)}({\mathbb{R}^n})$.Math. Inequal. Appl. 7 (2004), 255–266. MR 2057644 |
Reference:
|
[22] W. Orlicz: Über konjugierte Exponentenfolgen.Studia Math. 3 (1931), 200–212. Zbl 0003.25203, MR 0180849, 10.4064/sm-3-1-200-211 |
Reference:
|
[23] L. Pick, M. Růžička: An example of a space ${L}^{p(x)}$ on which the Hardy-Littlewood maximal operator is not bounded.Expo. Math. 19 (2001), 369–371. MR 1876258, 10.1016/S0723-0869(01)80023-2 |
Reference:
|
[24] M. Růžička: Electrorheological Fluids: Modeling and Mathematical Theory.Lecture Notes in Mathematics 1748, Springer, Berlin, 2000. MR 1810360 |
Reference:
|
[25] S. Samko: Convolution and potential type operators in $L^{p(x)}({\mathbb{R}^n})$.Integr. Transform. and Special Funct. 7 (1998), 261–284. MR 1775832, 10.1080/10652469808819204 |
Reference:
|
[26] S. Samko: Denseness of $C^\infty _0({{\mathbb{R}^n}})$ in the generalized Sobolev spaces $W^{m,p(x)}({{\mathbb{R}^n}})$.Direct and inverse problems of mathematical physics (Newark, DE, 1997), Int. Soc. Anal. Appl. Comput. 5, Kluwer Acad. Publ., Dordrecht, 2000, pp. 333–342. MR 1766309 |
Reference:
|
[27] I. Sharapudinov: On the topology of the space $L^{p(t)}([0;1])$.Matem. Zametki 26 (1979), 613–632. MR 0552723 |
Reference:
|
[28] D. Swanson, W. P. Ziemer: Sobolev functions whose inner trace at the boundary is zero.Ark. Mat. 37 (1999), 373–380. MR 1714762, 10.1007/BF02412221 |
Reference:
|
[29] V. V. Zhikov: Averaging of functions of the calculus of variations and elasticity theory.Math. USSR-Izv. 29 (1987), 33–66. MR 0864171, 10.1070/IM1987v029n01ABEH000958 |
. |