Previous |  Up |  Next

Article

Keywords:
variable exponent; Sobolev space; zero boundary value
Summary:
We study different definitions of the first order variable exponent Sobolev space with zero boundary values in an open subset of ${\mathbb{R}^n}$.
References:
[1] E. Acerbi, G. Mingione: Regularity results for a class of functionals with non-standard growth. Arch. Ration. Mech. Anal. 156 (2001), 121–140. MR 1814973
[2] D. R. Adams, L. I. Hedberg: Function Spaces and Potential Theory. Springer, Berlin, 1996. MR 1411441
[3] D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer: The maximal operator on variable $L^p$ spaces. Ann. Acad. Sci. Fenn. 28 (2003), 223–238. MR 1976842
[4] L. Diening: Maximal operator on generalized Lebesgue spaces ${L}^{p(\cdot )}$. Math. Inequal. Appl. 7 (2004), 245–254. MR 2057643
[5] L. Diening, M. Růžička: Calderón-Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot )}$ and problems related to fluid dynamics. J. Reine Ang. Math. 563 (2003), 197–220. MR 2009242
[6] D. E. Edmunds, J. Rákosník: Density of smooth functions in $W^{k,p(x)}(\Omega )$. Proc. Roy. Soc. London Ser. A 437 (1992), 229–236. MR 1177754
[7] M. Eleutera: Hölder continuity results for a class of functionals with non standard growth. Boll. Unione Mat. Ital. 7-B (2004), 129–157. MR 2044264
[8] X. Fan, D. Zhao: On the spaces ${L}^{p(x)}(\Omega )$ and ${W}^{m,p(x)}(\Omega )$. J. Math. Anal. Appl. 263 (2001), 424–446. MR 1866056
[9] P. Harjulehto, P. Hästö: Lebesgue points in variable exponent spaces. Ann. Acad. Sci. Fenn. Math. 29 (2004), 295–306. MR 2097234
[10] P. Harjulehto, P. Hästö, M. Koskenoja, S. Varonen: Sobolev capacity on the space $W^{1,p(\cdot )}({\mathbb{R}^n})$. J. Funct. Spaces Appl. 1 (2003), 17–33. MR 2011498
[11] P. Harjulehto, P. Hästö, M. Koskenoja, S. Varonen: The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values. Potential Anal. 25 (2006), 205–222. MR 2255345
[12] P. Hästö: On the density of continuous functions in variable exponent Sobolev space. Rev. Mat. Iberoamericana 23 (2007), 215–237. MR 2351132 | Zbl 1144.46031
[13] P. Hästö: Counter examples of regularity in variable exponent Sobolev spaces. The $p$-Harmonic Equation and Recent Advances in Analysis (Manhattan, KS, 2004), 133–143, Contemp. Math. 367, Amer. Math. Soc., Providence, RI, 2005. MR 2126704 | Zbl 1084.46025
[14] T. Kilpeläinen: A remark on the uniqueness of quasicontinuous functions. Ann. Acad. Sci. Fenn. Math. 23 (1998), 261–262.
[15] T. Kilpeläinen, J. Kinnunen, O. Martio: Sobolev spaces with zero boundary values on metric spaces. Potential Anal. 12 (2000), 233–247. MR 1752853
[16] V. Kokilasvili, S. Samko: Maximal and fractional operators in weighted $L^{p(x)}$ spaces. Rev. Mat. Iberoamericana 20 (2004), 493–515. MR 2073129
[17] O. Kováčik, J. Rákosník: On spaces $L^{p(x)}$ and $W^{1,p(x)}$. Czech. Math. J. 41 (1991), 592–618.
[18] A. K. Lerner: Some remarks on the Hardy-Littlewood maximal function on variable $L^p$ spaces. Math. Z. 251 (2005), 509–521. MR 2190341
[19] E. McShane: Extension of range of functions. Bull. Amer. Math. Soc. 40 (1934), 837–842. MR 1562984 | Zbl 0010.34606
[20] J. Musielak: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics 1034, Springer, Berlin, 1983. MR 0724434 | Zbl 0557.46020
[21] A. Nekvinda: Hardy-Littlewood maximal operator on $L^{p(x)}({\mathbb{R}^n})$. Math. Inequal. Appl. 7 (2004), 255–266. MR 2057644
[22] W. Orlicz: Über konjugierte Exponentenfolgen. Studia Math. 3 (1931), 200–212. MR 0180849 | Zbl 0003.25203
[23] L. Pick, M. Růžička: An example of a space ${L}^{p(x)}$ on which the Hardy-Littlewood maximal operator is not bounded. Expo. Math. 19 (2001), 369–371. MR 1876258
[24] M. Růžička: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics 1748, Springer, Berlin, 2000. MR 1810360
[25] S. Samko: Convolution and potential type operators in $L^{p(x)}({\mathbb{R}^n})$. Integr. Transform. and Special Funct. 7 (1998), 261–284. MR 1775832
[26] S. Samko: Denseness of $C^\infty _0({{\mathbb{R}^n}})$ in the generalized Sobolev spaces $W^{m,p(x)}({{\mathbb{R}^n}})$. Direct and inverse problems of mathematical physics (Newark, DE, 1997), Int. Soc. Anal. Appl. Comput. 5, Kluwer Acad. Publ., Dordrecht, 2000, pp. 333–342. MR 1766309
[27] I. Sharapudinov: On the topology of the space $L^{p(t)}([0;1])$. Matem. Zametki 26 (1979), 613–632. MR 0552723
[28] D. Swanson, W. P. Ziemer: Sobolev functions whose inner trace at the boundary is zero. Ark. Mat. 37 (1999), 373–380. MR 1714762
[29] V. V. Zhikov: Averaging of functions of the calculus of variations and elasticity theory. Math. USSR-Izv. 29 (1987), 33–66. MR 0864171
Partner of
EuDML logo